This study explored a 130-passenger advanced turboprop commercial airliner with the purposes of economic feasibility and energy efficiency. A baseline vehicle and a derivative vehicle were researched and analyzed in detail. Based on the findings of this analysis, an advanced future airliner was designed. For the advanced airliner, advanced technologies were suggested and projections of these technology benefits were implemented. Detailed performance analysis was conducted for all three aircraft. The energy efficiency of each vehicle was compared to current and future N+3 aircraft. Lastly, cost analysis was performed to observe the impact of these energy savings.
The three existing and future concepts evaluated were: 1) Bombardier 80- passenger Q400 baseline, 2) An expanded 130-passenger Bombardier Q400 termed the Q400XL, and 3) an N+3 advanced 130-passenger turboprop airliner termed the N+3 Airliner. The N+3 Airliner was compared to the SUGAR High, a Boeing/NASA N+3 aircraft, in both fuel efficiency and economic feasibility. The N+3 Airliner was 22 percent more energy efficient. At current oil prices, the N+3 Airliner had nearly identical operating cost. However, at two times current oil prices, the N+3 Airliner has a slight advantage economically. Therefore, as long as the price of oil is above 2011 oil prices, $3.03 per barrel, the N+3 Airliner will be an economically viable option. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52566 |
Date | 02 October 2014 |
Creators | Antcliff, Kevin Richard |
Contributors | Aerospace and Ocean Engineering, Lowe, K. Todd, Fuller, Christopher R., Raj, Pradeep, Choi, Seongim Sarah, Devenport, William J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds