Return to search

Estudo da desacetilação da quitosana e obtenção de suas nanopartículas para aplicação em Engenharia de tecidos. / Study of the deacetylation of chitosan and the obtaining of its nanoparticles for application in Tissue Engineering.

Estima-se, que, no Brasil, ocorram cerca de um milhão de vítimas de queimaduras por ano, e mesmo com a dinâmica de inovações na área da saúde, a reparação deste tipo de lesão tecidual, permanece um grande desafio. Os queimados tendem a contrair infecções sistêmicas, as quais poderão levar a óbito, se não houver o tratamento adequado ao paciente. Desta forma, são necessários cuidados extremos nas etapas que envolvem este complexo reparo tissular. Diante das dificuldades na substituição ou regeneração de órgãos ou tecidos lesionados, surgiu um campo interdisciplinar chamado de engenharia de tecidos, com foco no estudo para o desenvolvimento de suportes tridimensionais, constituídos de materiais sintéticos ou naturais, onde são cultivadas células do próprio paciente, para posteriormente serem reinseridas reparando tecidos ou substituindo órgãos por inteiro. A quitosana é um dos biopolímeros mais utilizados hoje na área de engenharia de tecidos, devido a sua capacidade de agir de forma significativa nas três fases que envolvem a cicatrização de queimaduras, sendo elas: a fase inflamatória, a fase proliferativa e a fase reparadora, e por sua alta ação bacteriostática e fungistática. Diante das propriedades já existentes da quitosana, o objetivo desta pesquisa foi o estudo para intensificá-las, através do aumento do seu grau de desacetilação e modificando-a para uma escala nanométrica aumentando assim sua área superficial. Para isso, a quitosana foi submetida a meio altamente alcalino com variação de temperatura e variação do tempo de reação, utilizando a ferramenta estatística fatorial completo 23. Após a obtenção das amostras desacetiladas, foi verificado, através dos espectros obtidos por espectroscopia na região do infravermelho, que os maiores valores de grau de desacetilação ocorreram utilizando os níveis máximos em todos os fatores envolvidos na reação. Para analisar a cinética da reação e confirmar as informações obtidas do fatorial 23, foi feito um novo planejamento fatorial 22, fixando o tempo de seis horas de reação, e no decorrer deste tempo foram retiradas onze alíquotas, para análise de seus graus de desacetilação (GD). O padrão de resultados dos experimentos permitiu a aplicação de um modelo matemático que representou a realidade do que ocorreu durante a reação, sendo este o modelo do núcleo não reagido. Posteriormente, a quitosana com alto grau de desacetilação foi submetida ao método de ultrassom e pelas análises do diâmetro das partículas, potencial zeta e índice de polidispersão, foi possível verificar que a quitosana após ser submetida ao ultrassom e no pH adequado, foi possível atingir partículas em escala nanométrica. / It is estimated that in Brazil about one million burn victims occur per year, and even with the dynamics of innovations in the health area, the repair of this type of tissue injury, remains a great challenge. Burns tend to contract systemic infections, which can lead to death if the patient is not adequately treated. In this way, extreme care is required in the steps involved in this complex tissue repair. Faced with difficulties in the replacement or regeneration of injured organs or tissues, an interdisciplinary field called tissue engineering has emerged, focusing on the study for the development of three-dimensional supports, consisting of synthetic or natural materials, where the patient\'s own cells are cultured, subsequently reinserted by repairing tissues or replacing whole organs. Chitosan is one of the most widely used biopolymers nowadays in the field of tissue engineering, due to its capacity to act in a significant way in the three phases that involve the healing of burns, namely: inflammatory phase, proliferative phase and repair phase, and for its high bacteriostatic and fungiostatic action. In view of the existing properties of chitosan, the objective of this research was to intensify them by increasing its degree of deacetylation and modifying it to a gauge scale, thus increasing its surface area. For this, chitosan was submitted to a highly alkaline medium with temperature variation and reaction time variation, using the complete factorial statistical tool 23. After obtaining the deacetylated samples, it was verified by spectroscopy in the infrared region, that the highest values of deacetylation degree occurred after using the maximum levels in all factors involved in the reaction. In order to analyze the kinetics of the reaction and to confirm the information obtained from factorial 23, a new 22 factorial design was made, fixing the time of six hours of reaction, during which eleven aliquots were taken for analysis of their degree of desacetylation (GD). The pattern of results of the experiments allowed the application of a mathematical model that represented the reality of what occurred during the reaction, being this the model of the shrinking core model. Subsequently, the chitosan with a high degree of deacetylation was subjected to the ultrasound method and the analysis of particle diameter, zeta potential and polydispersion index allowed to verify that chitosan after being submitted to ultrasound at the appropriate pH achieved particles in nanometer scale.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24102017-113542
Date07 August 2017
CreatorsSouza, Juliana Rodrigues de
ContributorsGiudici, Reinaldo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0028 seconds