Return to search

In-frame Mutagenesis Of Genes Encoding A Selenium-dependent Molybdenum Hydroxylase And Putative Accessory Proteins In Enterococcus Faecalis

Enterococcus faecalis is a well known nosocomial drug resistant pathogen that is responsible for urinary tract infections, bacteremia, wound infections and endocarditis through the formation of biofilms. It has been shown that 68 genes present within the core genome of E. faecalis are upregulated in biofilm formation. One of those 68 genes is a putative seleniumdependent molybdenum hydroxylase (SDMH). Adjacent to this gene are a series of open reading frames that have been postulated to play a role in the maturation of a labile selenium cofactor. The biosynthesis of this labile cofactor has yet to be studied at either the genetic or biochemical level. The addition of selenium to growth medium caused a significant increase in biofilm density and extracellular hydrogen peroxide by wild type E. faecalis. By site-directed mutagenesis gene products encoded in the SDMH operon were shown to be necessary for the selenium-dependent biofilm formation as well as extracellular hydrogen peroxide production. This biofilm and peroxide phenotype is inhibited both by tungsten or auranofin in wild type E. faecalis suggesting the SDMH is a necessary enzyme for selenium-dependent biofilm and peroxide formation. These results show that the gene products encoded within the SDMH operon are necessary for a selenium-dependent biofilm formation as well as extracellular hydrogen peroxide production. These mutants will provide the basis for defining the synthesis of the labile selenium cofactor and allow for an expanded understanding of the biological use of selenium.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2639
Date01 January 2010
CreatorsMallard, Christopher J.
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0027 seconds