The epidermis is the first barrier of protection of living organisms against external attacks. It is constantly renewed throughout life, through a process called "homeostasis", which ensures that every cell lost on its surface is replaced by new ones. Recent studies have shown that this balance is ensured by a hierarchy of stem cells (SC) and progenitors that perform 3 types of cell divisions, each having a fixed probability. Although the epidermis has been extensively studied during homeostasis, little is known about the cellular dynamics taking place when the epidermis must expand its surface. Are these probabilities of division immutable or can they change? In this project, we focused on two conditions of epidermal expansion: postnatal growth and wound healing. Using the mouse tail epidermis as a model, we show that the re-epithelialization after a wound is achieved via the formation of two transient compartments that are spatially and molecularly distinct :a leading edge and a proliferative hub. We show that the leading edge cells have a specific transcriptional signature that is independent of their quiescent state and we propose new markers not previously described. Using the technique of "lineage tracing", coupled with clonal analysis and mathematical modeling, we highlight the proliferation dynamics of SCs and progenitors during healing. We show that different populations of cells residing in different compartments, the hair follicle infundibulum and the interfollicular epidermis, acquire a similar dynamics and re-activate their SC while the progenitors increase their rate of proliferation without changing their division probabilities. This similar proliferation dynamics in two compartments of the epidermis suggests that division probabilities are not dictated by the cell of origin. Interestingly, cell dynamics is different during postnatal growth. Using lineage tracing, clonal analysis and single-cell transcriptional analysis, we demonstrate that the post-natal epidermis is composed of a homogeneous population of equipotent progenitors which ensure a harmonious tissue growth through a constant imbalance towards self-renewing divisions and an ever decreasing proliferation rate. On the other hand, we show that basal cells in the adult epidermis display a greater molecular heterogeneity and that this heterogeneity is acquired progressively at the end of growth. Finally, by coupling in vivo measurements and in vitro micro-patterning experiments, we show that the orientation of cell division of equipotent progenitors is locally influenced by the alignment of the collagen fibers of the underlying dermis. These data suggest that SC specification occurs late in postnatal development and that proliferation dynamics are not immutable and could therefore be influenced by extrinsic factors. / L’épiderme est la première barrière de protection des organismes vivants contre des attaques extérieures. Il est constamment renouvelé au cours de la vie, via un processus appelé « homeostasie », qui assure que chaque cellule perdue à sa surface soit remplacée par de nouvelles. Des études récentes ont montré que cet équilibre était assuré par une hiérarchie de cellules souches (CS) et de progéniteurs qui réalisent 3 types de divisions cellulaires, chaque type de division ayant une probabilité fixe. Bien que l’épiderme ait été intensivement étudié durant l’homeostasie, peu de choses sont connues concernant la dynamique cellulaire prenant place lors de phénomènes où l’épiderme doit grandir. Ces probabilités de division sont-elles immuables ou peuvent-elles au contraire changer ?Dans ce projet, nous nous sommes intéressés à deux conditions d’expansion de l’épiderme :la croissance post-natale et la cicatrisation des plaies. En utilisant l’épiderme de la queue de souris comme modèle, nous montrons que la ré-épithélialisation d’une plaie est réalisée via la formation de deux compartiments cellulaires transitoires distincts spatialement et du point de vue moléculaire :un front de migration et un centre prolifératif. Nous montrons que les cellules du front de migration ont une signature transcriptionnelle spécifique qui est indépendante de leur état de quiescence et proposons de nouveaux marqueurs non décrits auparavant. En utilisant la technique du « lineage tracing », couplée à une analyse clonale et à de la modélisation mathématique, nous mettons en évidence la dynamique de prolifération des CS et des progéniteurs lors de la cicatrisation. Nous montrons que différentes populations de cellules résidant dans des compartiments différents, l’infundibulum du follicule pileux et l’épiderme interfolliculaire, acquièrent une dynamique similaire et ré-activent leur CS tandis que les progéniteurs augmentent leur taux de prolifération sans changer leur probabilité de division. Cette dynamique de prolifération similaire dans deux compartiments de l’épiderme suggère que les probabilités de divisions ne sont pas dictées par la cellule d’origine. De façon intéressante, la dynamique cellulaire est par contre différente durant la croissance post-natale. En utilisant le lineage tracing, l’analyse clonale et des analyses transcriptionnelles sur cellule unique, nous démontrons que l’épiderme post-natal est composé d’une population homogène de progéniteurs équipotents qui présentent un constant déséquilibre envers des divisions d’auto-renouvèlement et un taux de prolifération décroissant, assurant une croissance harmonieuse de l’épiderme. En revanche, les cellules basales de l’épiderme adulte montrent une plus grande hétérogénéité moléculaire et cet hétérogénéité est acquise progressivement à la fin de la croissance. Enfin, en couplant des mesures in vivo et des expériences de micro-patterning in vitro, nous montrons que l’orientation de la division cellulaire des progéniteurs équipotents est localement influencée par l’alignement des fibres de collagène du derme sous-jacent. Ces données suggèrent que la spécification des CS survient tardivement au cours du développement post-natal et que la dynamique de prolifération n’est pas immuable et pourraient donc être influencée par des facteurs extrinsèques. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/303112 |
Date | 11 March 2020 |
Creators | Dekoninck, Sophie |
Contributors | Blanpain, Cédric, Brion, Jean Pierre, Richert, Bertrand, Parmentier, Marc, Franchimont, Denis, Jensen, Kim Bak, Itzkovitz, Shalev S.I. |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté de Médecine – Sciences biomédicales, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | French |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 216 p., 3 full-text file(s): application/pdf | application/pdf | application/pdf |
Rights | 3 full-text file(s): info:eu-repo/semantics/restrictedAccess | info:eu-repo/semantics/closedAccess | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds