Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane.
In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1-100)-oriented (m-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology.
One of the obstacles impeding the development of this technology is the lack of suitable substrates for high quality materials having semi-polar and nonpolar orientations. Even though the growth of free-standing GaN substrates (homoepitaxy) could produce material of reasonable quality, the native nonpolar and semi-polar substrates are very expensive and small in size. On the other hand, GaN growth of semi-polar and nonpolar orientations on inexpensive, large-size foreign substrates (heteroepitaxy), including silicon (Si) and sapphire (Al2O3), usually leads to high density of extended defects (dislocations and stacking faults). Therefore, it is imperative to explore approaches that allow the reduction of defect density in the semi-polar GaN layers grown on foreign substrates.
In the presented work, I develop a cost-effective preparation technique of high performance light emitting structures (GaN-on-Si, and GaN-on-Sapphire technologies). Based on theoretical calculations predicting the maximum indium incorporation efficiency at θ ~ 62º (θ being the tilt angle of the orientation with respect to c-plane), I investigate (11-22) and (1-101) semi-polar orientations featured by θ = 58º and θ = 62º, respectively, as promising candidates for green emitters. The (11-22)-oriented GaN layers are grown on planar m-plane sapphire, while the semi-polar (1-101) GaN are grown on patterned Si (001).
The in-situ epitaxial lateral overgrowth techniques using SiNx nanoporous interlayers are utilized to improve the crystal quality of the layers. The data indicates the improvement of photoluminescence intensity by a factor of 5, as well as the improvement carrier lifetime by up to 85% by employing the in-situ ELO technique. The electronic and optoelectronic properties of these nonpolar and semi-polar planes include excitonic recombination dynamics, optical anisotropy, exciton localization, indium incorporation efficiency, defect-related optical activities, and some challenges associated with these new technologies are discussed. A polarized emission from GaN quantum wells (with a degree of polarization close to 58%) with low non-radiative components is demonstrated for semi-polar (1-101) structure grown on patterned Si (001). We also demonstrated that indium incorporation efficiency is around 20% higher for the semi-polar (11-22) InGaN quantum wells compared to its c-plane counterpart. The spatially resolved cathodoluminescence spectroscopy demonstrates the uniform distribution of indium in the growth plane. The uniformity of indium is also supported by the relatively low exciton localization energy of Eloc = 7meV at 15 K for these semi-polar (11-22) InGaN quantum wells compared to several other literature reports on c-plane. The excitons are observed to undergo radiative recombination in the quantum wells in basal-plane stacking faults at room temperature. The wurtzite/zincblende electronic band-alignment of BSFs is proven to be of type II using the time-resolved differential transmission (TRDT) method. The knowledge of band alignment and degree of carrier localization in BSFs are extremely important for evaluating their effects on device properties. Future research for better understanding and potential developments of the semi-polar LEDs is pointed out at the end.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5327 |
Date | 01 January 2016 |
Creators | Monavarian, Morteza |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.003 seconds