• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of efficiency droop of green light emitting diodes grown by metalorganic chemical vapor deposition

Sebkhi, Nordine 18 November 2011 (has links)
The objective of this thesis is to discuss the solutions investigated by AMDG (Advanced Materials and Devices Group) to reduce the "efficiency droop" effect that occurs in III-Nitrides Light Emitting Diodes (LEDs) when driven at high injection current densities. The efficiency droop refers to a decrease of the LED light emission efficiency when increases the current density from low values ~10 A/cm2 to higher values >100A/cm2. Many scientific papers have been written about the possible reasons for this phenomenon. Therefore, this thesis will discuss the different effects suspected to contribute to the droop, and discuss LED structure modifications studied by Dr. Dupuis' research group to reduce their impact. In addition to a description of a conventional LED structure, a discussion of the device fabrication process will be provided including the solutions investigated in our group to improve LED performance. Because measurement is critical to our studies, a description of the equipment used by the AMDG will be provided, e.g., the Electroluminescence (EL) and Photoluminescence (PL) test stations, Atomic Force Microscopy (AFM) for surface topology, TLM for metallic contact resistivity, X-Ray diffraction for crystal quality and epitaxial layer structure, and Hall-Effect measurement for doping concentration characterization and material resistivity. Because the IQE gives us a direct assessment of the active region's crystal quality, the setup and operation of a new Temperature-Dependent PL (TD-PL) system to measure the Internal Quantum Efficiency (IQE) was the main focus of this research. The External Quantum Efficiency (EQE) is measured using electroluminescence measurements. The EL measurements involve the acquisition of the emitted light spectrum along with different processed data such as the Full-Width at Half Maximum (FWHM) of the spectral intensity, the peak wavelength, output power, etc., which allows a comparison of the different LED structure performances. Within this work, a new LabVIEW© program (called QuickTest 2.0) has been developed in order to automate the instrumentation setup and improve both the speed and accuracy of EL acquisition. A brief description of the G language used by the LabVIEW© software will be provided along with the objective and motivation for upgrading the program, the general features of the program, and a comparison of spectrum acquisition and processed data results. The benefit for the research in the AMDG was to reduce measurement time, improve efficiency, supply a more user-friendly front-panel, and to enable transfer to other computers.
2

Micro-structure Engineering of InGaN/GaN Quantum Wells for High Brightness Light Emitting Devices

Shen, Chao 05 1900 (has links)
With experimental realization of micro-structures, the feasibility of achieving high brightness, low efficiency droop blue LED was implemented based on InGaN/GaN micro-LED-pillar design. A significantly high current density of 492 A/cm2 in a 20 μm diameter (D) micro-LED-pillar was achieved, compared to that of a 200 μm diameter LED (20 A/cm2), both at 10 V bias voltage. In addition, an increase in sustained quantum efficiency from 70.2% to 83.7% at high injection current density (200 A/cm2) was observed in micro-LED-pillars in conjunction with size reduction from 80 μm to 20 μm. A correlation between the strain relief and the electrical performance improvement was established for micro-LED-pillars with D < 50 μm, apart from current spreading effect. The degree of strain relief and its distribution were further studied in micro-LED-pillars with D ranging from 1 μm to 15 μm. Significant wavenumbers down-shifts for E2 and A1 Raman peaks, together with the blue shifted PL peak emission, were observed in as-prepared pillars, reflecting the degree of strain relief. A sharp transition from strained to relaxed epitaxy region was discernible from the competing E2 phonon peaks at 572 cm-1 and 568 cm-1, which were attributed to strain residue and strain relief, respectively. A uniform strain relief at the center of micro-pillars was achieved, i.e. merging of the competing phonon peaks, after Rapid Thermal Annealing (RTA) at 950℃ for 20 seconds, phenomenon of which was observed for the first time. The transition from maximum strain relief to a uniform strain relief was found along the narrow circumference (< 2.5 μm) of the pillars from the line-map of Raman spectroscopy. The extent of strain relief is also examined considering the height (L) of micro-LED-pillars fabricated using FIB micro-machining technique. The significant strain relief of up to 70% (from -1.4 GPa to -0.37 GPa), with a 71 meV PL peak blue shift, suggested that micro-LED-pillar with D < 3 μm and L > 3 μm in the array configuration would allow the building of practical devices. Overall, this work demonstrated a novel top-down approach to manufacture large effective-area, high brightness emitters for solid-state lighting applications.
3

Efficiency droop mitigation and quantum efficiency enhancement for nitride Light-Emitting Diodes

Li, Xing 25 July 2012 (has links)
In the past decade, GaN-based nitrides have had a considerable impact in solid state lighting and high speed high power devices. InGaN-based LEDs have been widely used for all types of displays in TVs, computers, cell phones, etc. More and more high power LEDs have also been introduced in general lighting market. Once widely used, such LEDs could lead to the decrease of worldwide electrical consumption for lighting by more than 50% and reduce total electricity consumption by > 10%. However, there are still challenges for current state-of-the art InGaN-based LEDs, including ‘efficiency droop’ issues that cause output power quenching at high current injection levels (> 100 A/cm2). In this dissertation, approaches were investigated to address the major issues related to state-of-the-art nitride LEDs, in particular related to (1) efficiency droop investigations on m-plane and c-plane LEDs: enhanced matrix elements in m-plane LEDs and smaller hole effective mass favors the hole transport across the active region so that m-plane LEDs exhibit 30% higher quantum efficiency and negligible efficiency droop at high injection levels compared to c-plane counterparts; (2) engineering of InGaN active layers for achieving high quantum efficiency and minimal efficiency droop: lower and thinner InGaN barrier enhance hole transport as well as improves the quantum efficiencies at injection levels; (3) double-heterostructure (DH) active regions: various thicknesses were also investigated in order to understand the electron and hole recombination mechanism. We also present that using multi-thin DH active regions is a superior approach to enhance the quantum efficiency compared with simply increasing the single DH thickness or the number of quantum wells (QWs, 2 nm-thick) in multi-QW (MQW) LED structures due to the better material quality and higher density of states. Additionally, increased thickness of stair-case electron injectors (SEIs) has been demonstrated to greatly mitigate electron overflow without sacrificing material quality of the active regions. Finally, approaches to enhance light extraction efficiency including using Ga doped ZnO as the p-GaN contact layer to improve light extraction as well as current spreading was introduced.
4

Optical and Temporal Carrier Dynamics Investigations of III-Nitrides for Semiconductor Lighting

Ajia, Idris A. 22 May 2018 (has links)
III-nitride semiconductors suffer significant efficiency limitations; ‘efficiency’ being an umbrella term that covers an extensive list of challenges that must be overcome if they are to fulfil their vast potential. To this end, it is imperative to understand the underlying phenomena behind such limitations. In this dissertation, I combine powerful optical and structural characterization techniques to investigate the effect of different defects on the carrier dynamics in III-nitride materials for light emitting devices. The results presented herein will enhance the current understanding of the carrier mechanisms in such devices, which will lead to device efficiency improvements. In the first part of this dissertation, the effects of some important types of crystal defects present in III-nitride structures are investigated. Here, two types of defects are studied in two different III-nitride-based light emitting structures. The first defects of interest are V-pit defects in InGaN/GaN multiple quantum well (MQW) blue LEDs, where their contribution to the high-efficiency of such LEDs is discussed. In addition, the effect of these defects on the efficiency droop phenomenon in these LEDs is elucidated. Secondly, the optical effects of grain boundary defects in AlN-rich AlGaN/AlGaN MQWs is studied. In this study, it is shown that grain boundary defects may result in abnormal carrier localization behavior in these deep ultraviolet (UV) structures. While both defects are treated individually, it is evident from these studies that threading dislocation (TD) defects are an underlying contributor to the more undesirable outcomes of the said defects. In the second part, the dissertation reports on the carrier dynamics of III-nitride LED structures grown on emerging substrates—as possible efficiency enhancing techniques—aimed at mitigating the effects of TD defects. Thus, the carrier dynamics of GaN/AlGaN UV MQWs grown, for the first time, on (2̅01) – oriented β-Ga2O3 is studied. It is shown to be a candidate substrate for highly efficient vertical UV devices. Finally, results from the carrier dynamics investigation of an AlGaN/AlGaN MQW LED structure homoepitaxially grown on AlN substrate are discussed, where it is shown that its high-efficiency is sustained at high temperatures through the thermal redistribution of carriers to highly efficient recombination sites.
5

Gallium Nitride Based Heterostructure Interband Tunnel Junctions

Krishnamoorthy, Sriram January 2014 (has links)
No description available.
6

Engineering Efficiency Droop in InGaN/GaN Multiple Quantum Well LEDs

Puttaswamy Gowda, Yashvanth Basaralu 01 May 2012 (has links)
In this work, we propose a model to address the challenge of droop in internal quantum efficiency in InGaN/GaN Multiple Quantum Well LEDs. Efficiency droop limits the performance of high brightness LEDs as they operate at currents greater than 350mA. The efficiency droop is a multi-physics problem posed by various entities such as (1) dislocation recombination, (2) Auger recombination in active region, (3) non-radiative recombination, and (4) current overflow in the active region. This work aims at reducing the droop associated with non-radiative recombination by engineering the quantum well barrier thickness and materials. The goals are three-fold, namely: (1) To explore the role of barriers in determining the droop in internal quantum efficiency and to justify the use of multiple barriers to increase the carrier density and reduce the leakage current thereby increase the radiative recombination at higher current densities ; (2) Propose optimum barrier specifications such as number, material combination, and thickness for downscaling the efficiency droop, and thereby improving the device efficiency; and (3) Finally, obtain improved efficiency by engineering the barrier in a realistically-sized device by considering the effects of long-range strain fields in the device.
7

Optical studies of InGaN/GaN quantum well structures

Davies, Matthew John January 2014 (has links)
In this thesis I present and discuss the results of optical spectroscopy performed on InGaN/GaN single and multiple quantum well (QW) structures. I report on the optical properties of InGaN/GaN single and multiple QW structures, measured at high excitation power densities. I show a correlation exists between the reduction in PL efficiency at high excitation power densities, the phenomenon so-called ``efficiency-droop'', and a broadening of the PL spectra. I also show a distinct change in recombination dynamics, measured by time-resolved photoluminescence (PL), which occurs at the excitation power densities for which efficiency droop is measured. The broadening of the PL spectra at high excitation power densities is shown to occur due to a rapidly redshifting, short-lived high energy emission band. The high energy emission band is proposed to be due to the recombination of weakly localised/delocalised carriers occurring as a consequence of the progressive saturation of the local potential fluctuations responsible for carrier localisation, at high excitation power densities. I report on the effects of varying threading dislocation (TD) density on the optical properties of InGaN/GaN multiple QW structures. No systematic relationship exists between the room temperature internal quantum efficiency (IQE) and the TD density, in a series of nominally identical InGaN/GaN multiple QWs deposited on GaN templates of varying TD density. I also show the excitation power density dependence of the PL efficiency, at room temperatures, is unaffected for variation in the TD density between 2 x107 and 5 x109 cm-2. The independence of the optical properties to TD density is proposed to be a consequence of the strong carrier localisation, and hence short carrier diffusion lengths. I report on the effects of including an InGaN underlayer on the optical and microstructural properties of InGaN/GaN multiple QW structures. I show an increase in the room temperature IQE occurs for the structure containing the InGaN underlayer, compared to the reference. I show using PL excitation spectroscopy that an additional carrier transfer and recombination process occurs on the high energy side of the PL spectrum associated with the InGaN underlayer. Using PL decay time measurements I show the additional recombination process for carriers excited in the underlayer occurs on a faster timescale than the recombination at the peak of the PL spectrum. The additional contribution to the spectrum from the faster recombination process is proposed as responsible for the increase in room temperature IQE.
8

Growth and characterization of non-polar GaN materials and investigation of efficiency droop in InGaN light emitting diodes

Ni, Xianfeng 06 August 2010 (has links)
General lighting with InGaN light emitting diodes (LEDs) as light sources is of particular interest in terms of energy savings and related environmental benefits due to high lighting efficiency, long lifetime, and Hg-free nature. Incandescent and fluorescent light sources are used for general lighting almost everywhere. But their lighting efficiency is very limited: only 20-30 lm/W for incandescent lighting bulb, approximately 100 lm/W for fluorescent lighting. State-of-the-art InGaN LEDs with a luminous efficacy of over 200 lm/W at room temperature have been reported. However, the goal of replacing the incandescent and fluorescent lights with InGaN LEDs is still elusive since their lighting efficiency decreases substantially when the injection current increases beyond certain values (typically 10-50 Acm-2). In order to improve the electroluminescence (EL) performance at high currents for InGaN LEDs, two approaches have been undertaken in this thesis. First, we explored the preparation and characterization of non-polar and semi-polar GaN substrates (including a-plane, m-plane and semi-polar planes). These substrates serve as promising alternatives to the commonly used c-plane, with the benefit of a reduced polarization-induced electric field and therefore higher quantum efficiency. It is demonstrated that LEDs on m-plane GaN substrates have inherently higher EL quantum efficiency and better efficiency retention ability at high injection currents than their c-plane counterparts. Secondly, from a device structure level, we explored the possible origins of the EL efficiency degradation at high currents in InGaN LEDs and investigated the effect of hot electrons on EL of LEDs by varying the barrier height of electron blocking layer. A first-order theoretical model is proposed to explain the effect of electron overflow caused by hot electron transport across the LED active region on LED EL performance. The calculation results are in agreement with experimental observations. Furthermore, a novel structure called a “staircase electron injector” (SEI) is demonstrated to effectively thermalize hot electrons, thereby reducing the reduction of EL efficiency due to electron overflow. The SEI features several InyGa1-yN layers, with their In fraction (y) increasing in a stepwise manner, starting with a low value at the first step near the junction with n-GaN.
9

Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

Monavarian, Morteza 01 January 2016 (has links)
Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1-100)-oriented (m-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology. One of the obstacles impeding the development of this technology is the lack of suitable substrates for high quality materials having semi-polar and nonpolar orientations. Even though the growth of free-standing GaN substrates (homoepitaxy) could produce material of reasonable quality, the native nonpolar and semi-polar substrates are very expensive and small in size. On the other hand, GaN growth of semi-polar and nonpolar orientations on inexpensive, large-size foreign substrates (heteroepitaxy), including silicon (Si) and sapphire (Al2O3), usually leads to high density of extended defects (dislocations and stacking faults). Therefore, it is imperative to explore approaches that allow the reduction of defect density in the semi-polar GaN layers grown on foreign substrates. In the presented work, I develop a cost-effective preparation technique of high performance light emitting structures (GaN-on-Si, and GaN-on-Sapphire technologies). Based on theoretical calculations predicting the maximum indium incorporation efficiency at θ ~ 62º (θ being the tilt angle of the orientation with respect to c-plane), I investigate (11-22) and (1-101) semi-polar orientations featured by θ = 58º and θ = 62º, respectively, as promising candidates for green emitters. The (11-22)-oriented GaN layers are grown on planar m-plane sapphire, while the semi-polar (1-101) GaN are grown on patterned Si (001). The in-situ epitaxial lateral overgrowth techniques using SiNx nanoporous interlayers are utilized to improve the crystal quality of the layers. The data indicates the improvement of photoluminescence intensity by a factor of 5, as well as the improvement carrier lifetime by up to 85% by employing the in-situ ELO technique. The electronic and optoelectronic properties of these nonpolar and semi-polar planes include excitonic recombination dynamics, optical anisotropy, exciton localization, indium incorporation efficiency, defect-related optical activities, and some challenges associated with these new technologies are discussed. A polarized emission from GaN quantum wells (with a degree of polarization close to 58%) with low non-radiative components is demonstrated for semi-polar (1-101) structure grown on patterned Si (001). We also demonstrated that indium incorporation efficiency is around 20% higher for the semi-polar (11-22) InGaN quantum wells compared to its c-plane counterpart. The spatially resolved cathodoluminescence spectroscopy demonstrates the uniform distribution of indium in the growth plane. The uniformity of indium is also supported by the relatively low exciton localization energy of Eloc = 7meV at 15 K for these semi-polar (11-22) InGaN quantum wells compared to several other literature reports on c-plane. The excitons are observed to undergo radiative recombination in the quantum wells in basal-plane stacking faults at room temperature. The wurtzite/zincblende electronic band-alignment of BSFs is proven to be of type II using the time-resolved differential transmission (TRDT) method. The knowledge of band alignment and degree of carrier localization in BSFs are extremely important for evaluating their effects on device properties. Future research for better understanding and potential developments of the semi-polar LEDs is pointed out at the end.

Page generated in 0.0758 seconds