Return to search

Equations Singulières de type KPZ / Singular KPZ Type Equations

Dans cette thèse, on s'intéresse à l'existence et à l'unicité d'une solution pour l'équation KPZ généralisée. On utilise la théorie récente des structures de régularité inspirée des chemins rugueux et introduite par Martin Hairer afin de donner sens à ce type d'équations singulières. La procédure de résolution comporte une partie algébrique à travers la définition du groupe de renormalisation et une partie stochastique avec la convergence de processus stochastiques renormalisés. Une des améliorations notoire de ce travail apportée aux structures de régularité est la définition du groupe de renormalisation par le biais d'une algèbre de Hopf sur des arbres labellés. Cette nouvelle construction permet d'obtenir des formules simples pour les processus stochastiques renormalisés. Ensuite, la convergence est obtenue par un traitement efficace de diagrammes de Feynman. / In this thesis, we investigate the existence and the uniqueness of the solution of the generalised KPZ equation. We use the recent theory of regularity structures inspired from the rough path and introduced by Martin Hairer in order to give a meaning to this singular equation. The procedure contains an algebraic part through the renormalisation group and a stochastic part with the computation of renormalised stochastic processes. One major improvement in the theory of the regularity structures is the definition of the renormalisation group using a Hopf algebra on some labelled trees. This new construction paves the way to simple formulas very useful for the renormalised stochastic processes. Then the convergence is obtained by an efficient treatment of some Feynman diagrams.

Identiferoai:union.ndltd.org:theses.fr/2015PA066517
Date14 December 2015
CreatorsBruned, Yvain
ContributorsParis 6, Zambotti, Lorenzo
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds