Ce travail est consacré à l'étude d'un problème issu de la physique des plasmas: le transfert thermique des électrons dans un plasma proche de l'équilibre maxwellien. Dans un premier temps, le régime asymptotique de Spitzer-Harm est étudié. Un modèle proposé par Schurtz et Nicolai est analysé et situé dans le cadre des modeles hydrodynamiques en dehors de la limite strictement asymptotique. Le lien avec les modèles non-locaux de Luciani et Mora est établi, ainsi que les propriétés mathématiques tels que le principe du maximum et la dissipation entropique. Ensuite, une dérivation formelle à partir des équations de Vlasov est proposée. Une hiérarchie de modèles intermédiaires entre les équations cinétiques et la limite hydrodynamique est décrite. En particulier, un nouveau système hydrodynamique, de nature intégro-différentielle, est proposé. Le système Schurtz et Nicolai apparaît comme une simplification du modèle issu de la diversion. L'existence et l'unicité de la solution du système non-stationnaire sont établies dans un cadre simplifié. La dernière partie est consacrée à la mise en œuvre d'un schéma numérique spécifique pour la résolution de ces modèles. Nous proposons une approche par volumes finis efficace sur des maillages non-structurés. La précision de ce schéma permet de capturer des effets spécifiques aux modèles cinéiques, qui ne peut être reproduit par le modèle asymptotique de Spitzer-Harm. La consistance de ce schéma avec celui de l'équation Spitzer-Harm est mise en evidence, ouvrant la voie à une stratégie de couplage entre les deux modèles.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00793342 |
Date | 23 September 2011 |
Creators | Parisot, Martin |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds