Return to search

Application of Optimal Power Flow for Power System Restoration

With the deregulation of power industry and the market competition, low cost, reliable power supply, and secured system operations are major concerns of the advanced deregulation markets. Power system protection is important for service reliability and quality assurance. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively and accurately with fault alarms. First, an operational strategy for secondary power system restoration using Modified Grey Relational Analysis (MGRA) is proposed. The Restoration Scheme (RS) can be divided into three steps involving fault section determination, recovering process, and voltage correction process. Three GRAs are incorporated to design the overall restoration scheme. The first GRA uses network switching status to identify the fault. The second GRA combines switching states and load levels for network recovery. The third GRA uses capacitor bank control to support bus voltages. For security operation of restoration scheme, an Equivalent Current Injection (ECI) based hybrid current-power Optimal Power Flow (OPF) model with Predictor-Corrector Interior Point Algorithm (PCIPA) is used to verify the proposed scheme by off-line analysis to confirm a secure overall network operation including load-power balance, power generation limits, voltage limits, and power flow limits. The proposed method can further decompose into two sub-problems. Computer simulations were conducted with an IEEE 30-bus power system to show the effectiveness of the proposed restoration scheme and the PCIPA technique is very accurate, robust, and efficient for the modified OPF solution.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0610108-232153
Date10 June 2008
CreatorsHuang, Cong-Hui
ContributorsTa-Peng Taso, Whei-Min Lin, Ching-Tsai Pan, Shyh-Jier Huang, Chih-Wen Liu, Hong-Tzer Yang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0610108-232153
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0016 seconds