• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of Microwave Active/Passive Elements Using the FDTD Methods

Wu, Bo-Zhang 03 July 2003 (has links)
The FDTD method is a numerical method that uses the second-order central-difference method to discrete the Maxwell¡¦s equations in differential form, and positioning electromagnetic field in space grids and time grids. It is applied to analyze many electromagnetic problems in time domain. In the thesis, we applied FDTD methods to solve EMC/EMI problems like the interference to a mixer from an antenna, and the packaging effects to a small signal microwave amplifier and so on. Therefore, we applied equivalent current source approach to simulate each microwave elements at first. And, we extend the approach to field of EMC/EMI. researching the advantages of FDTD methods in Full-Wave analysis.
2

Unbalanced Distributed Distribution Network Fault Analysis and Smart Grid Application

Ou, Ting-Chia 24 November 2010 (has links)
A direct and rigid algorithm approach based on Equivalent Current Injection (ECI) for large-scale distribution power flow analysis is proposed in this dissertation. This algorithm used two primary matrices: BI and ZV-BC. Two matrices, which are built from the topological characteristics of distribution networks, are used to achieve the power flow solutions. BI matrix is the bus injection to branch current matrix and the ZV-BC matrix describes the relationship between the bus voltage mismatches and the branch current. The building algorithm is easily programmable and can be accomplished by a simple search technique with the two proposed matrices. Four connected cases are considered in this dissertation. The proposed algorithm is robust and accurate. Test results demonstrate the potential and validity of the proposed algorithm in distribution applications. Secondly, this thesis also presents a fault analysis with hybrid compensation for unbalanced distribution systems is proposed. The method employs the unbalanced three-phase model to analyze faults. BI and ZV-BC matrices containing information of the topological characteristics of distribution networks were built along with the proposed hybrid compensation method for analysis. Appropriate boundary conditions can be obtained for a fault to solve various types of single or simultaneous faults. The time-consuming LU decompositions, the Jacobian matrix, or the Y admittance matrix, required in the traditional algorithms, are not needed in the new development. Test results show that the proposed method is efficient, easy to program, also with advantages of high speed, robustness, improved accuracy, and lower memory requirements. This thesis also presents a hybrid programming (HP) technique to solve the reconfiguration problem for loss reduction and service restoration in Smart Grid application.
3

Voltage Stability Study for Dynamic Load with Modified Orthogonal Particle Swarm Optimization

Lin, Wu-Cheng 24 June 2011 (has links)
The thesis use capacitors, Static Synchronous Compensator (STATCOM) and wind generator to get optimal voltage stability for twenty-four-hour dynamic load by compensating real/reactive power. In the thesis, Modified Orthogonal Particle Swarm Optimizer (MOPSO) is proposed to find the sitting and sizing of capacitors, STATCOM and wind generator, and integrate Equivalent Current Injection (ECI) algorithm to solve Optimal Power Flow (OPF) to achieve optimal voltage stability. The algorithm uses MOPSO to renew STATCOM and wind turbine sizing Gbest with multiple choices and Taguchi orthogonal array, which improves Particle Swarm Optimizer (PSO) without falling into the local optimal solution and searches optimal voltage stability of power system by load balancing equation and inequality constraints. Average Voltage Variation (AVV) and Average Voltage Drop Variation (AVDV) are proposed as objective function to calculate whole system voltage variations, and convergence test of MOPSO. The IEEE 33 Bus distribution system and Miaoli-Houlong distribution system were used for simulation to test the voltage control during peak and off-peak periods of Taipower. Compensation of real/reactive power was used to get optimal system voltage stability for each simulated case.
4

Application of the ADI-FDTD Method to Planar Circuits

Fan, Yang-Xing 01 July 2004 (has links)
The Finite-Difference Time Domain (FDTD) method is a very useful numerical simulation technique for solving problems related to electromagnetism. However, as the traditional FDTD method is based on an explicit finite-difference algorithm, the Courant-Friedrich-Levy(CFL) stability condition must be satisfied when this method is used. Therefore, a maximum time-step size is limited by minimum cell size in a computational domain, which means that if an object of analysis has fine scale dimensions, a small time-step size creates a significant increase in calculation time. Alternating-Direction Implicit (ADI) method is based on an implicit finite-difference algorithm. Since this method is unconditionally stable, it can improve calculation time by choosing time-step arbitrarily. The ADI-FDTD is based on an Alternating direction implicit technique and the traditional FDTD algorithm. The new method can circumvent the stability constraint. In this thesis, we incorporate Lumped Element and Equivalent Current Source method into the ADI-FDTD. By using them to simulate active or passive device, the application of method will be more widely.
5

System Contingency Study with Power Flow Tracing Method for Congestion Management

Shen, Wan-Bao 27 June 2011 (has links)
The ¡§Congestion Management¡¨ (CM) always has been an outstanding and major problem in power system operation. To solve this problem, experts compose solutions in a wide variety. This thesis, based on the equivalent current, applies the Equivalent Current Injection (ECI) concept and circuit parameters to derive the Power Flow Tracing Method (PFTM) . By means of this method we can get a Sensitive Matrix (SM), which is also called the Contribution Matrix (CM), to show the linear relationship between the input power and tidal current discharge of each generator set, with the linear relationship we can derive the mathematic model of treating the congestion problem discussed in this thesis. Combining the Predictor-Corrector Interior Point Algorithm (PCIPA), we can manipulate the change of each generator set in the prospective of solving the congestion problem resulting from the system contingency (SC). The thesis performed various simulations for the IEEE 30 Bus system. Regarding the power contingencies, the solutions of the power-congestion problems can be resulted from the following incidents: heavy load addition, transmission line tripped, generator malfunction as well as the multi-contingencies, etc., which can all be solved with solutions within reasonably restricted domains. We can thus verify the effectiveness of the method .
6

Multiple-Frequency Load Flow Model and Power Flow Tracing in Deregulated Market

Zhan, Tung-Sheng 19 January 2006 (has links)
With the deregulation of power industry and the market competition, reliable power supply and secured system operation are major concerns of the independent system operator (ISO). Power system operation under deregulated environment is very complicated with various possibilities of decisions involved. A robust and fast network analysis tool is one of important functions of conventional EMS, and this function will be reserved for the on-line analysis to deal with varied behaviors of the new deregulated environment. Firstly, a multiple-frequency three-phase load flow model was developed in this dissertation. There are two new sub-models including the fundamental power flow (FPF) and harmonic frequency power flow (HPF) model. In FPF, models of electrical elements and injected power on buses were treated in the form of current injections in a transmission system. The standard Fourier analysis was used to deal with the harmonic loads to get injection currents. With harmonic currents as equivalent current sources, the HPF can be derived. Besides, the fast assumptive model and decoupled model of FPF and HPF, called AFPF, DFPF and DHPF, were also proposed to improve execution time of the load flow programs. Test results show that the proposed general-purpose methods are better performers than conventional power flow solutions and are very robust. Secondly, the novel method, Upstream Tracing Model (UTM) and Downstream Tracing Model (DTM), to trace the power flow in transmission systems based on the converged AC power flow solution was proposed. The method is formulated by using the transmission network structure, the equivalent current-injection and load-admittances from the engineering viewpoint. Four steps are used to trace the linear relationship between each line flow and generator injection power without any assumption and the counter flow can be traced out, then the power consumption on each load can be represented as generators¡¦ contribution. According to the result of tracing, the loss of each line can be allocated to each generator by using a fair line usage concept. This tracing algorithm can calculate each generator¡¦s contribution quickly and fairly, and can be integrated into the existent tariffs of charging for transmission losses and services.
7

Application of Optimal Power Flow for Power System Restoration

Huang, Cong-Hui 10 June 2008 (has links)
With the deregulation of power industry and the market competition, low cost, reliable power supply, and secured system operations are major concerns of the advanced deregulation markets. Power system protection is important for service reliability and quality assurance. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively and accurately with fault alarms. First, an operational strategy for secondary power system restoration using Modified Grey Relational Analysis (MGRA) is proposed. The Restoration Scheme (RS) can be divided into three steps involving fault section determination, recovering process, and voltage correction process. Three GRAs are incorporated to design the overall restoration scheme. The first GRA uses network switching status to identify the fault. The second GRA combines switching states and load levels for network recovery. The third GRA uses capacitor bank control to support bus voltages. For security operation of restoration scheme, an Equivalent Current Injection (ECI) based hybrid current-power Optimal Power Flow (OPF) model with Predictor-Corrector Interior Point Algorithm (PCIPA) is used to verify the proposed scheme by off-line analysis to confirm a secure overall network operation including load-power balance, power generation limits, voltage limits, and power flow limits. The proposed method can further decompose into two sub-problems. Computer simulations were conducted with an IEEE 30-bus power system to show the effectiveness of the proposed restoration scheme and the PCIPA technique is very accurate, robust, and efficient for the modified OPF solution.
8

Brain source localization using SEEG recordings / Localisation de sources cérébrales à partir de mesures SEEG

Caune, Vairis 18 July 2017 (has links)
L’EEG de surface permet l'étude spatio-temporelle de l’activité cérébrale avec une résolution temporelle élevée, cependant elle souffre de la forte atténuation du champ électrique propagée par l'os du crâne et de la présence de sources de bruits externes. De ce fait, nous souhaitons exploiter les mesures issues de la Stéréo-EEG (SEEG). Cette modalité consiste en l'introduction d'électrodes d'enregistrement au plus près des générateurs, bénéficiant ainsi d'un rapport signal à bruit bien supérieur à celui observé en EEG. Nous proposons ainsi dans cette thèse une étude de faisabilité de l'imagerie de sources à partir de ces mesures, basée sur une méthode d'inversion de type dipôle équivalent associée à un modèle de propagation à une sphère, capable d'amener à une précision de localisation de l'ordre de quelques millimètres. A partir d'une implantation clinique usuelle de la SEEG, nous évaluons les performances de localisation lorsque différents sous-ensembles de capteurs sont considérés. En présence de bruit réaliste, nous constatons que l'ajout de capteurs lointains peut amener à une dégradation de la précision de localisation. Ces conclusions nous amènent à proposer une approche de sélection des capteurs locaux dans le but d'optimiser la fiabilité des résultats. Les atouts et faiblesses de cette approche sont analysés dans un cadre de simulation réaliste afin d'explorer de façon pertinente les différents paramètres pouvant influer sur la qualité de résolution du problème inverse. Les approches sont appliquées sur des enregistrements SEEG récoltés au CHRU de Nancy afin de confronter les méthodes de localisation proposées à des mesures réelles / The surface EEG makes it possible to study the brain activity with a high temporal resolution, however it suffers from the severe attenuation of the electrical propagation through the skull bone as well as the addition of external artifacts. As an alternative, we would like to exploit the Stereo-EEG (SEEG) recordings, consisting in shaft electrodes implanted in the brain volume in the direct vicinity of the brain generators. These data benefit from a high signal to noise ratio compared to this observed in surface EEG. We propose in this thesis a feasibility study of source imaging from the SEEG, based on an equivalent current dipole inversion method associated with an analytical One-Sphere propagation model, able to bring localization precision of the order of a few millimeters. Using a typical clinical electrode implantation, we evaluate the localization performance when different subsets of sensors are considered. In the presence of realistic noise, we observe that the addition of distant sensors with respect to the source can lead to a degradation of the localization accuracy. These conclusions lead us to propose a local sensor selection approach in order to optimize the reliability of the results. The strengths and weaknesses of this approach are analyzed on a realistic simulation framework, for a relevant exploration of the different parameters impacting on the quality of the SEEG source imaging. The approaches are applied on SEEG recordings collected at the CHRU of Nancy to evaluate their performance when facing real measurements
9

Stabilization of Hypoxia Inducible Factor by Cobalt Chloride Can Alter Renal Transepithelial Transport

Nag, Subhra Sankar 20 September 2018 (has links)
No description available.
10

Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

Finke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.

Page generated in 0.099 seconds