In this thesis, we investigate a special class of multi-agent systems, which we call reciprocal multi-agent (RMA) systems. The evolution of agents in a RMA system is governed by interactions between pairs of agents. Each interaction is reciprocal, and the magnitude of attraction/repulsion depends only on distances between agents. We investigate the class of RMA systems from four perspectives, these are two basic properties of the dynamical system, one formula for computing the Morse indices/co-indices of critical formations, and one formation control model as a variation of the class of RMA systems. An important aspect about RMA systems is that there is an equivariant potential function associated with each RMA system so that the equations of motion of agents are actually a gradient flow. The two basic properties about this class of gradient systems we will investigate are about the convergence of the gradient flow, and about the question whether the associated potential function is generically an equivariant Morse function. We develop systematic approaches for studying these two problems, and establish important results. A RMA system often has multiple critical formations and in general, these are hard to locate. So in this thesis, we consider a special class of RMA systems whereby there is a geometric characterization for each critical formation. A formula associated with the characterization is developed for computing the Morse index/co-index of each critical formation. This formula has a potential impact on the design and control of RMA systems. In this thesis, we also consider a formation control model whereby the control of formation is achieved by varying interactions between selected pairs of agents. This model can be interpreted in different ways in terms of patterns of information flow, and we establish results about the controllability of this control system for both centralized and decentralized problems. / Engineering and Applied Sciences
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12269878 |
Date | 06 June 2014 |
Creators | Chen, Xudong |
Contributors | Brockett, Roger Ware |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0018 seconds