• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground states in Gross-Pitaevskii theory

Sobieszek, Szymon January 2023 (has links)
We study ground states in the nonlinear Schrödinger equation (NLS) with an isotropic harmonic potential, in energy-critical and energy-supercritical cases. In both cases, we prove existence of a family of ground states parametrized by their amplitude, together with the corresponding values of the spectral parameter. Moreover, we derive asymptotic behavior of the spectral parameter when the amplitude of ground states tends to infinity. We show that in the energy-supercritical case the family of ground states converges to a limiting singular solution and the spectral parameter converges to a nonzero limit, where the convergence is oscillatory for smaller dimensions, and monotone for larger dimensions. In the energy-critical case, we show that the spectral parameter converges to zero, with a specific leading-order term behavior depending on the spatial dimension. Furthermore, we study the Morse index of the ground states in the energy-supercritical case. We show that in the case of monotone behavior of the spectral parameter, that is for large values of the dimension, the Morse index of the ground state is finite and independent of its amplitude. Moreover, we show that it asymptotically equals to the Morse index of the limiting singular solution. This result suggests how to estimate the Morse index of the ground state numerically. / Dissertation / Doctor of Philosophy (PhD)
2

A equação de morse e o índice de Conley / The Morse equation and the Conley index

Botelho, Eduardo Favarão 11 March 2008 (has links)
O índice de Conley é uma ferramenta utilizada no estudo de sistemas dinâmicos. Em particular, as decomposições de Morse combinadas com uma apropriada versão do índice de Conley e uma correspondente equação de Morse freqüentemente nos permitem obter resultados de multiplicidade de soluções. Neste trabalho, apresentamos a teoria do índice de Conley e a equação de Morse associada a uma decomposição de Morse e aplicamos os resultados em equações diferenciais ordinárias / The Conley index is a well known tool used in the analysis of dynamical systems. In particular, Morse decompositions combined with an appropriate version of the Conley index and a corresponding Morse equation, often allow us to obtain multiplicity results for solutions. In this work we introduce the Conley index theory and the Morse equation relative to a Morse decomposition and apply the results to ordinary differential equations
3

On Computing Multiple Solutions of Nonlinear PDEs Without Variational Structure

Wang, Changchun 2012 May 1900 (has links)
Variational structure plays an important role in critical point theory and methods. However many differential problems are non-variational i.e. they are not the Euler- Lagrange equations of any variational functionals, which makes traditional critical point approach not applicable. In this thesis, two types of non-variational problems, a nonlinear eigen solution problem and a non-variational semi-linear elliptic system, are studied. By considering nonlinear eigen problems on their variational energy profiles and using the implicit function theorem, an implicit minimax method is developed for numerically finding eigen solutions of focusing nonlinear Schrodinger equations subject to zero Dirichlet/Neumann boundary condition in the order of their eigenvalues. Its mathematical justification and some related properties, such as solution intensity preserving, bifurcation identification, etc., are established, which show some significant advantages of the new method over the usual ones in the literature. A new orthogonal subspace minimization method is also developed for finding multiple (eigen) solutions to defocusing nonlinear Schrodinger equations with certain symmetries. Numerical results are presented to illustrate these methods. A new joint local min orthogonal method is developed for finding multiple solutions of a non-variational semi-linear elliptic system. Mathematical justification and convergence of the method are discussed. A modified non-variational Gross-Pitaevskii system is used in numerical experiment to test the method.
4

A equação de morse e o índice de Conley / The Morse equation and the Conley index

Eduardo Favarão Botelho 11 March 2008 (has links)
O índice de Conley é uma ferramenta utilizada no estudo de sistemas dinâmicos. Em particular, as decomposições de Morse combinadas com uma apropriada versão do índice de Conley e uma correspondente equação de Morse freqüentemente nos permitem obter resultados de multiplicidade de soluções. Neste trabalho, apresentamos a teoria do índice de Conley e a equação de Morse associada a uma decomposição de Morse e aplicamos os resultados em equações diferenciais ordinárias / The Conley index is a well known tool used in the analysis of dynamical systems. In particular, Morse decompositions combined with an appropriate version of the Conley index and a corresponding Morse equation, often allow us to obtain multiplicity results for solutions. In this work we introduce the Conley index theory and the Morse equation relative to a Morse decomposition and apply the results to ordinary differential equations
5

Nonlinear waves on metric graphs

Kairzhan, Adilbek January 2020 (has links)
We study the nonlinear Schrödinger (NLS) equation on star graphs with the Neumann- Kirchhoff (NK) boundary conditions at the vertex. We analyze the stability of standing wave solutions of the NLS equation by using different techniques. We consider a half-soliton state of the NLS equation, and by using normal forms, we prove it is nonlinearly unstable due to small perturbations that grow slowly in time. Moreover, under certain constraints on parameters of the generalized NK conditions, we show the existence of a family of shifted states, which are parametrized by a translational parameter. We obtain the spectral stability/instability result for shifted states by using the Sturm theory for counting the Morse indices of the shifted states. For the spectrally stable shifted states, we show that the momentum of the NLS equation is not conserved which results in the irreversible drift of the family of shifted states towards the vertex of the star graph. As a result, the spectrally stable shifted states are nonlinearly unstable. We also study the NLS equation on star graphs with a delta-interaction at the vertex. The presence of the interaction modifies the NK boundary conditions by adding an extra parameter. Depending on the value of the parameter, the NLS equation admits symmetric and asymmetric standing waves with either monotonic or non-monotonic structure on each edge. By using the Sturm theory approach, we prove the orbital instability of the standing waves. / Thesis / Doctor of Philosophy (PhD)
6

O fluxo espectral de caminhos de operadores de Fredholm auto-adjuntos em espaços de Hilbert / Spectral flow of a path of selfadjoint Fredholm operators in Hilbert spaces

Acevedo, Jeovanny de Jesus Muentes 26 November 2013 (has links)
O objetivo principal desta dissertação é apresentar o fluxo espectral de um caminho de operadores de Fredholm auto-adjuntos em um espaço de Hilbert e suas propriedades. Pelos resultados clássicos de teoria espectral, sabemos que se H é um espaço de Hilbert e L : H &#8594 H é um operador linear, limitado e auto-adjunto, H pode ser escrito como soma direta ortogonal H+(L)&#8853 H-(L)&#8853 Ker L, onde H+(L) e H-(L) são os subespaços espectrais positivo e negativo de L, respectivamente. No trabalho damos uma definição de fluxo espectral baseada na decomposição acima, aprofundando as conexões deste conceito com a teoria espectral dos operadores de Fredholm em espaços de Hilbert. Entre as propriedades do fluxo espectral, será analisada a invariância homotópica que se apresenta em várias formas. Veremos o conceito de índice de Morse relativo, que estende o clássico índice de Morse, e sua relação com o fluxo espectral. A construção do fluxo espectral dada neste trabalho segue a abordagem de P. M. Fitzpatrick, J. Pejsachowicz e L. Recht em [9]. / The main purpose of this dissertation is to present the spectral flow of a path of selfadjoint Fredholm operators in a Hilbert space and its properties. By classical results in spectral theory, we know that, if H is a Hilbert space and L : H &#8594 H is a bounded self-adjoint linear operator, H may be written as the following orthogonal direct sum H = H+(L)&#8853 H-(L)&#8853 Ker L, where H+(L) and H-(L) are the positive and negative spectral subspaces of L, respectively. In this work we give a definition of spectral flow which is based on the above splitting, examining in depth the connection between this concept and the spectral theory of Fredholm operators in Hilbert spaces. Among the properties of the spectral flow we will analyze the homotopic invariance, which appears on different ways. We will see the concept of relative Morse index, which generalize the classical Morse index, and its relation with the spectral flow. The construction of the spectral flow given in this work follows the approach of P. M. Fitzpatrick, J. Pejsachowicz and L. Recht in [9].
7

O fluxo espectral de caminhos de operadores de Fredholm auto-adjuntos em espaços de Hilbert / Spectral flow of a path of selfadjoint Fredholm operators in Hilbert spaces

Jeovanny de Jesus Muentes Acevedo 26 November 2013 (has links)
O objetivo principal desta dissertação é apresentar o fluxo espectral de um caminho de operadores de Fredholm auto-adjuntos em um espaço de Hilbert e suas propriedades. Pelos resultados clássicos de teoria espectral, sabemos que se H é um espaço de Hilbert e L : H &#8594 H é um operador linear, limitado e auto-adjunto, H pode ser escrito como soma direta ortogonal H+(L)&#8853 H-(L)&#8853 Ker L, onde H+(L) e H-(L) são os subespaços espectrais positivo e negativo de L, respectivamente. No trabalho damos uma definição de fluxo espectral baseada na decomposição acima, aprofundando as conexões deste conceito com a teoria espectral dos operadores de Fredholm em espaços de Hilbert. Entre as propriedades do fluxo espectral, será analisada a invariância homotópica que se apresenta em várias formas. Veremos o conceito de índice de Morse relativo, que estende o clássico índice de Morse, e sua relação com o fluxo espectral. A construção do fluxo espectral dada neste trabalho segue a abordagem de P. M. Fitzpatrick, J. Pejsachowicz e L. Recht em [9]. / The main purpose of this dissertation is to present the spectral flow of a path of selfadjoint Fredholm operators in a Hilbert space and its properties. By classical results in spectral theory, we know that, if H is a Hilbert space and L : H &#8594 H is a bounded self-adjoint linear operator, H may be written as the following orthogonal direct sum H = H+(L)&#8853 H-(L)&#8853 Ker L, where H+(L) and H-(L) are the positive and negative spectral subspaces of L, respectively. In this work we give a definition of spectral flow which is based on the above splitting, examining in depth the connection between this concept and the spectral theory of Fredholm operators in Hilbert spaces. Among the properties of the spectral flow we will analyze the homotopic invariance, which appears on different ways. We will see the concept of relative Morse index, which generalize the classical Morse index, and its relation with the spectral flow. The construction of the spectral flow given in this work follows the approach of P. M. Fitzpatrick, J. Pejsachowicz and L. Recht in [9].
8

Multi-Agent Systems with Reciprocal Interaction Laws

Chen, Xudong 06 June 2014 (has links)
In this thesis, we investigate a special class of multi-agent systems, which we call reciprocal multi-agent (RMA) systems. The evolution of agents in a RMA system is governed by interactions between pairs of agents. Each interaction is reciprocal, and the magnitude of attraction/repulsion depends only on distances between agents. We investigate the class of RMA systems from four perspectives, these are two basic properties of the dynamical system, one formula for computing the Morse indices/co-indices of critical formations, and one formation control model as a variation of the class of RMA systems. An important aspect about RMA systems is that there is an equivariant potential function associated with each RMA system so that the equations of motion of agents are actually a gradient flow. The two basic properties about this class of gradient systems we will investigate are about the convergence of the gradient flow, and about the question whether the associated potential function is generically an equivariant Morse function. We develop systematic approaches for studying these two problems, and establish important results. A RMA system often has multiple critical formations and in general, these are hard to locate. So in this thesis, we consider a special class of RMA systems whereby there is a geometric characterization for each critical formation. A formula associated with the characterization is developed for computing the Morse index/co-index of each critical formation. This formula has a potential impact on the design and control of RMA systems. In this thesis, we also consider a formation control model whereby the control of formation is achieved by varying interactions between selected pairs of agents. This model can be interpreted in different ways in terms of patterns of information flow, and we establish results about the controllability of this control system for both centralized and decentralized problems. / Engineering and Applied Sciences
9

Índice de Conley para atratores de inclusão diferencial / Conley index for attractors of differential inclusions

Queiroz, Lenison Alves de 20 August 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-09-21T12:14:18Z No. of bitstreams: 2 Dissertação - Lenison Alves de Queiroz - 2018.pdf: 2458759 bytes, checksum: 2c5c2eaaeddd81877e21434dae197d8e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-24T11:11:13Z (GMT) No. of bitstreams: 2 Dissertação - Lenison Alves de Queiroz - 2018.pdf: 2458759 bytes, checksum: 2c5c2eaaeddd81877e21434dae197d8e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-24T11:11:13Z (GMT). No. of bitstreams: 2 Dissertação - Lenison Alves de Queiroz - 2018.pdf: 2458759 bytes, checksum: 2c5c2eaaeddd81877e21434dae197d8e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The present work deals with mathematical themes called Conley’s theory, differential inclu- sions and Morse theory inserted in this variant is the topological invariant for the region of discontinuity, the Conley index of discontinuous vector fields, where the discontinuities are concentrated on a surface. With this invariant it is possible to predict bifurcation results, as well as results of regularization of the discontinuous field. In Conley’s Theory, one doesn’t investigate only a single invariant set in a system; on the contrary, it is a decomposition of an invariant set into several “smaller” invariant subsets along with the orbits that connect these subsets. The methodology adopted for the research was based on the deductive analy- sis, a method that allowed the determination of the Conley index using tools of differential inclusions, index-pair and Morse theory to arrive at the determination of the homological in- dex. / O presente trabalho trata de temas da matemática denominados a teoria de Conley, inclusões diferenciais e teoria de Morse inserido nesta variante encontra-se o invariante topológico pa- ra a região de descontinuidade, o índice de Conley de campos de vetores descontínuos, onde as descontinuidades estão concentradas numa superfície. Com este invariante é possível pre- ver resultados de bifurcação, bem como resultados de regularização de campos descontínuos. Na Teoria de Conley, não se investiga somente um único conjunto invariante em um siste- ma, pelo contrário, trata-se de uma decomposição de um conjunto invariante em vários sub- conjuntos invariantes "menores" juntamente com as órbitas que conectam estes subconjuntos. A metodologia adotada para a pesquisa se fundamentou na análise dedutiva, método que per- mitiu determinar o índice de Conley utilizando ferramentas de inclusões diferenciais, par-ín- dice e a teoria de Morse para se chegar a determinação do índice homológico.
10

Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse / Study of solutions of some nonlinear partial differential equations via the Morse index

Mtiri, Foued 25 November 2016 (has links)
Cette thèse porte principalement sur l'étude des solutions de certaines équations aux dérivées partielles elliptiques via l'indice de Morse, y compris des solutions stables, i.e. quand l'indice de Morse est égal à zéro. Elle comporte deux parties indépendantes.Dans la première partie, sous des hypothèses sur-linéaires et sous-critiques sur f, on établit d'abord une estimation explicite de la norme L [infini] des solutions de -Δu = f(u) avec u = 0 sur le bord, via leurs indices de Morse. On propose une approche plus transparente et plus souple que le travail de Yang [1998], ce qui nous permet de traiter des non linéarités très proches de la croissance critique. Les résultats obtenus nous ont motivé de travailler sur des équations polyharmoniques (-Δ)ku = f(x; u) avec notamment k = 2 et 3. Avec des hypothèses semblables à Yang [1998] sur f et des conditions au bord convenables, on obtient pour la première fois des estimations explicites de solution des équations polyhamoniques, via l'indice de Morse. Dans la seconde partie, on considère un système de Lane-Emden-Δu = ρ(x)vp; -Δv = ρ(x)u θ ; u; v > 0; dans RN; avec 1 < p< θ et un poids radial ρ strictement positif. Nous montrons la non-existence de solution stable en petites dimensions N. Nos résultats améliorent les travaux précédents de Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], et fournissent notamment des résultats du type Liouville pour solution stable, en petites dimensions N, valables pour tout 1 < ρ min(4 3 ; θ) / The main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)

Page generated in 0.0605 seconds