• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Structure of Radial Solutions to a Semilinear Elliptic Equation and A Pohozaev Identity

Shiao, Jiunn-Yean 16 June 2003 (has links)
The elliptic equation $Delta u+K(|x|)|u|^{p-1}u=0,xin mathbf{R}^{n}$ is studied, where $p>1$, $n>2$, $K(r)$ is smooth and positive on $(0,infty)$, and $rK(r)in L^{1}(0,1)$. It is known that the radial solution either oscillates infinitely, or $lim_{r ightarrow infty}r^{n-2}u(r;al) in Rsetminus {0}$ (rapidly decaying), or $lim_{r ightarrow infty}r^{n-2}u(r;al) = infty (or -infty)$ (slowly decaying). Let $u=u(r;al)$ is a solution satisfying $u(0)=al$. In this thesis, we classify all the radial solutions into three types: Type R($i$): $u$ has exactly $i$ zeros on $(0,infty)$, and is rapidly decaying at $r=infty$. Type S($i$): $u$ has exactly $i$ zeros on $(0,infty)$, and is slowly decaying at $r=infty$. Type O: $u$ has infinitely many zeros on $(0,infty)$. If $rK_{r}(r)/K(r)$ satisfies some conditions, then the structure of radial solutions is determined completely. In particular, there exists $0<al_{0}<al_{1}<al_{2}<cdots<infty$ such that $u(r;al_{i})$ is of Type R($i$), and $u(r;al)$ is of Type S($i$) for all $al in (al_{i-1},al_{i})$, where $al_{-1}:=0$. These works are due to Yanagida and Yotsutani. Their main tools are Kelvin transformation, Pr"{u}fer transformation, and a Pohozaev identity. Here we give a concise account. Also, I impose a concept so called $r-mu graph$, and give two proofs of the Pohozaev identity.
2

Solução positiva de uma equação de Schrödinger assintoticamente linear no infinito via variedade de Pohozaev / Solución positiva de una ecuación de Schrödinger asintóticamente lineal en el infinito via variedad de Pohozaev

Chata, Juan Carlos Ortiz [UNESP] 21 February 2017 (has links)
Submitted by JUAN CARLOS ORTIZ CHATA null (hacermate@outlook.com) on 2017-03-03T19:11:52Z No. of bitstreams: 1 Disertação de Juan.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T13:50:24Z (GMT) No. of bitstreams: 1 chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Made available in DSpace on 2017-03-09T13:50:24Z (GMT). No. of bitstreams: 1 chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho teórico em Equações Diferenciais Parciais Elípticas, iremos apresentar uma abordagem diferente e mais geral na busca de solução positiva da equação de Schrödinger assintoticamente linear no infinito -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Métodos variacionais são usados para o estudo da existência das soluções fracas positivas sobre um apropriado subconjunto da variedade de Pohozaev associado ao problema, sob certas condições na não-linearidade. / In this theoretical work in Elliptic Partial Differential Equation, we will present a different and more general approach in the search of positive solution of asymptotically linear Schrödinger equation -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Variational methods are used to study the existence of the weak positive solutions on an appropriate subset of Pohozaev manifold associated with the problem, under certain assumptions on the nonlinearty.
3

Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse / Study of solutions of some nonlinear partial differential equations via the Morse index

Mtiri, Foued 25 November 2016 (has links)
Cette thèse porte principalement sur l'étude des solutions de certaines équations aux dérivées partielles elliptiques via l'indice de Morse, y compris des solutions stables, i.e. quand l'indice de Morse est égal à zéro. Elle comporte deux parties indépendantes.Dans la première partie, sous des hypothèses sur-linéaires et sous-critiques sur f, on établit d'abord une estimation explicite de la norme L [infini] des solutions de -Δu = f(u) avec u = 0 sur le bord, via leurs indices de Morse. On propose une approche plus transparente et plus souple que le travail de Yang [1998], ce qui nous permet de traiter des non linéarités très proches de la croissance critique. Les résultats obtenus nous ont motivé de travailler sur des équations polyharmoniques (-Δ)ku = f(x; u) avec notamment k = 2 et 3. Avec des hypothèses semblables à Yang [1998] sur f et des conditions au bord convenables, on obtient pour la première fois des estimations explicites de solution des équations polyhamoniques, via l'indice de Morse. Dans la seconde partie, on considère un système de Lane-Emden-Δu = ρ(x)vp; -Δv = ρ(x)u θ ; u; v > 0; dans RN; avec 1 < p< θ et un poids radial ρ strictement positif. Nous montrons la non-existence de solution stable en petites dimensions N. Nos résultats améliorent les travaux précédents de Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], et fournissent notamment des résultats du type Liouville pour solution stable, en petites dimensions N, valables pour tout 1 < ρ min(4 3 ; θ) / The main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)
4

Équations polyharmoniques sur les variétés et études asymptotiques dans une équation de Hardy-Sobolev / Some Polyharmonic equations on Manifolds and Blow-up Analysis of a Hardy-Sobolev equation

Mazumdar, Saikat 27 June 2016 (has links)
Ce mémoire est divisé en deux parties : Partie 1 : Nous obtenons des résultats d'existence pour des problèmes au limite mettant en jeu des opérateurs polyharmoniques conformément invariants. Nous nous plaçons indifféremment dans le cas d'une variété riemannienne avec ou sans bord. En particulier, nous montrons que la meilleure constante de Sobolev sur les variétés est exactement la constante euclidienne. En conséquence, nous montrons l'existence d'une solution d'énergie minimale lorsque la fonctionnelle descend en-dessous d'un seuil quantifié. Puis nous montrons l'existence de solutions de haute énergie en utilisant la méthode topologique de Coron. Nous généralisons la décomposition des suites de Palais-Smale comme somme de bulles sur une variété avec ou sans bord : il s'agit d'un résultat dans l'esprit du célèbre théorème de Struwe en 1984. Nous obtenons aussi une version du lemme de compacité-concentration de Pierre-Louis Lions sur les variétés. Partie 2 : Dans cette partie, nous effectuons une analyse de blow-up pour une équation de Hardy-Sobolev à croissance critique et à singularité évanescente au bord. En supposant que l'équation limite n'admet pas de solution minimisante, nous étudions le comportement asymptotique d’une suite de solutions de l'équation perturbée. Ici, la perturbation est la singularité à l'origine. Dans un premier temps, nous obtenons un contrôle ponctuel optimal de la suite de solutions. Dans un second temps, nous obtenons des informations précises sur le point d'explosion en utilisant une identité de Pohozaev / This memoir can be divided into two parts: Part 1: In this part we obtain some existence results for conformally invariant polyharmonic boundary value problems on a compact Riemannian manifold with or without boundary. In particular we show that the best constant of the Sobolev embedding on manifolds is same as the euclidean one, and as a consequence prove the existence of minimum energy solutions when the energy functionnal goes below a quantified threshold. Next we show the existence of high energy solution using the topological method of Coron. We generalize the decomposition of Palais Smale sequences as a sum of bubble on manifolds with or without boundary, a result in the spirit of Struwe's celebrated 1984 result and also an extension of PL Lions concentration compactness result on manifolds. Part2: In this part we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev equation with critical growth and vanishing boundary singularity. We assume that our equation does not admit minimising solutions, and study the asymptotic behaviour of a sequence of solution to the perturbed equation. Here the perturbation is the singularity at the origin. First we obtain optimal pointwise controlon the sequence and then obtain more precise informations on the localization of the blow-up point using the Pohozaev identity

Page generated in 0.0678 seconds