Spelling suggestions: "subject:"constante dde sobolev"" "subject:"constante dde korolev""
1 |
Multiplicidade de soluções para uma classe de problemas críticos via categoria de Lusternik-Schnireman. / Multiplicity of solutions for a class of critical problems via Lusternik-Schnireman category.MELO, Jéssyca Lange Ferreira. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T13:50:44Z
No. of bitstreams: 1
JÉSSYCA LANGE FERREIRA MELO - DISSERTAÇÃO PPGMAT 2010..pdf: 549809 bytes, checksum: d97e157afe502f81bdc9beda3a5c1489 (MD5) / Made available in DSpace on 2018-07-24T13:50:44Z (GMT). No. of bitstreams: 1
JÉSSYCA LANGE FERREIRA MELO - DISSERTAÇÃO PPGMAT 2010..pdf: 549809 bytes, checksum: d97e157afe502f81bdc9beda3a5c1489 (MD5)
Previous issue date: 2010-02 / CNPq / Para visualizar o resumo recomendamos do download do arquivo uma vez que o mesmo utiliza formulas ou equações matemáticas que não puderam ser transcritas neste espaço. / To preview the summary we recommend downloading the file since it uses mathematical formulas or equations that could not be transcribed in this space.
|
2 |
Um problema elíptico com expoente crítico de SobolevRicardo, Cleiton de Lima 31 July 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:23Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 590579 bytes, checksum: 4c4cd48135a64532856a71b6336c52f4 (MD5)
Previous issue date: 2014-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we studied existence of positive solutions for an elliptic problem with critical Sobolev exponent
(-u = up + f(x; u) em u = 0 sobre @ that vanishes on the boundary of a bounded domain of Rn. The nonlinearity f(x; u) has subcritical growth. This is done by showing that the minimax level is below a constant that depends only on the dimension of the domain and the best Sobolev constant. / Nesta dissertação procuramos abordar a existência de soluções positivas para um problema elíptico com expoente crítico de Sobolev
(-u = up + f(x; u) em u = 0 sobre @ onde é um domínio limitado do Rn. A não-linearidade de f(x; u) possui crescimento subcrítico. Para isso mostraremos que o nível minimax fica abaixo de uma constante que depende apenas da dimensão do domínio e da melhor constante de Sobolev.
|
3 |
Équations polyharmoniques sur les variétés et études asymptotiques dans une équation de Hardy-Sobolev / Some Polyharmonic equations on Manifolds and Blow-up Analysis of a Hardy-Sobolev equationMazumdar, Saikat 27 June 2016 (has links)
Ce mémoire est divisé en deux parties : Partie 1 : Nous obtenons des résultats d'existence pour des problèmes au limite mettant en jeu des opérateurs polyharmoniques conformément invariants. Nous nous plaçons indifféremment dans le cas d'une variété riemannienne avec ou sans bord. En particulier, nous montrons que la meilleure constante de Sobolev sur les variétés est exactement la constante euclidienne. En conséquence, nous montrons l'existence d'une solution d'énergie minimale lorsque la fonctionnelle descend en-dessous d'un seuil quantifié. Puis nous montrons l'existence de solutions de haute énergie en utilisant la méthode topologique de Coron. Nous généralisons la décomposition des suites de Palais-Smale comme somme de bulles sur une variété avec ou sans bord : il s'agit d'un résultat dans l'esprit du célèbre théorème de Struwe en 1984. Nous obtenons aussi une version du lemme de compacité-concentration de Pierre-Louis Lions sur les variétés. Partie 2 : Dans cette partie, nous effectuons une analyse de blow-up pour une équation de Hardy-Sobolev à croissance critique et à singularité évanescente au bord. En supposant que l'équation limite n'admet pas de solution minimisante, nous étudions le comportement asymptotique d’une suite de solutions de l'équation perturbée. Ici, la perturbation est la singularité à l'origine. Dans un premier temps, nous obtenons un contrôle ponctuel optimal de la suite de solutions. Dans un second temps, nous obtenons des informations précises sur le point d'explosion en utilisant une identité de Pohozaev / This memoir can be divided into two parts: Part 1: In this part we obtain some existence results for conformally invariant polyharmonic boundary value problems on a compact Riemannian manifold with or without boundary. In particular we show that the best constant of the Sobolev embedding on manifolds is same as the euclidean one, and as a consequence prove the existence of minimum energy solutions when the energy functionnal goes below a quantified threshold. Next we show the existence of high energy solution using the topological method of Coron. We generalize the decomposition of Palais Smale sequences as a sum of bubble on manifolds with or without boundary, a result in the spirit of Struwe's celebrated 1984 result and also an extension of PL Lions concentration compactness result on manifolds. Part2: In this part we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev equation with critical growth and vanishing boundary singularity. We assume that our equation does not admit minimising solutions, and study the asymptotic behaviour of a sequence of solution to the perturbed equation. Here the perturbation is the singularity at the origin. First we obtain optimal pointwise controlon the sequence and then obtain more precise informations on the localization of the blow-up point using the Pohozaev identity
|
Page generated in 0.0559 seconds