Spelling suggestions: "subject:"equations elliptic"" "subject:"equations elliptical""
1 |
Structures singulières de quelques problèmes variationnelsDevillanova, Giuseppe 28 October 2005 (has links) (PDF)
Cette thèse étudie des phénomènes de concentration. Des méthodes sont développées pour éviter les concentrations et obtenir des résultats de compacité (1ère partie). Une fonctionelle menant à des solutions concentrées sur un ensemble 1-dimensionnel est ensuite introduite (2ème partie).
|
2 |
Some results for nonlocal elliptic and parabolic nonlinear equations / Quelques résultats pour équations non local elliptiques et paraboliques non linéairesTopp Paredes, Erwin 01 September 2014 (has links)
Cette thèse se consacre à l’étude des propriétés qualitatives d’équations elliptiques dégénérées où la diffusion est purement non locale, et s’est réalisée dans le cadre de la théorie des solutions visqueuses. La première partie de la thèse traite de l’étude des propriétés de compacité d’une famille d’opérateurs non locaux d’ordre zéro. Ces opérateurs sont d’opérateurs elliptiques non locaux définis par le biais d’une mesure bornée. On considère une famille d’opérateurs uni-paramétrique d’ordre zéro de la forme \begin{eqnarray*} \mathcal{I}_\epsilon(u, x) = \int_{\mathbb{R}^N} [u(x + z) - u(x)]K_\epsilon(z)dz, \end{eqnarray*} où, pour chaque S\epsilon \in (0,1)$, $K_\epsilon \in L^I(\mathbb{R}^N)$ est une fonction radialement symétrique et positive. On configure notre problème de sorte que $\mathcal{I}_\epsilon$ tende vers du Laplacien fractionnaire quand $\epsilon \to 0^+$, ce qui implique que la norme $L^1S des $K_\epsilon$ n’est pas bornée lorsque $\epsilon \to 0^+$. Un premier résultat de cette partie est un module de continuité dans l’espace-temps pour la famille des solutions bornées de l’équation de la chaleur non-locale dans le plan associé à $\matbcal{I}_\epsilon$, indépendante de $\epsilon \in (0,1)$. Le second résultat de cette partie considère le problème de Dirichlet sur un domaine borné \Omega \subset \R^N$ associé à $mathcal{I}_\epsilon$, et conclut à la compacité de la famille de solutions bornées ${u_\epsilon }_\epsilon$ pour ces problèmes de Dirichlet, en exhibant un module de continuité commun sur $\bar(\Omega)$ pour $\{ u_\epsilon \}_\epsilon$, indépendant de $\epsilon$. / This thesis is devoted to the study of qualitative properties of degenerate elliptic equations where the diffusion is purely nonlocal, and it is carried out in the framework of the theory of viscosity solutions. The first part of the thesis is focused in the study of compactness properties of a family of \textsl{zero-th order nonlocal operators], that is, elliptic nonlocal operators defined though a finite measure. We consider a one parameter family of zero-th order operator with the form \begin{eqnarray*} \mathcal{I}_\epsilon(u, x) = \int_{\mathbb{R}^N} [u(x + z) - u(x)]K_\epsilon(z)dz, \end{eqnarray*} where, for each $\epsilon ‘sin (0,1)$, $K_\epsilon Mn L^1(\mathbb{R^N})$ is a radially symmetric, positive function. We set our problem in such a way $\mathcal{l}_\epsilon$ approaches the fractional Laplacian as $\epsilon \to 0^+$, implying that the $L^1$-norm of $K_\epsilon$ blows up as $\epsilon \to 0^+$. In the first result of this part we provide a common space-time modulus of continuity independent of $\epsilon Mn (0,1)$, for the family of bounded solutions of the nonlocal Heat equation in the plane associated to $\mathcal{I}_\epsilon$. The second result of this part considers a Dirichlet problem in a bounded domain $\Omega \subset $\mathbb{R}^N$ associated to $mathcaI{I}_\epsilon$, and we conclude the compactness of the family of bounded solutions $\{u_\epsilon \}_\epsilon$ to these Dirichlet problems by finding a common modulus of continuity in $\bar{\Omega}$ for ${ u_\epsilon \}_\epsilon$, which is independent of $\epsilon$.
|
3 |
Etude théorique et numérique d'équations aux dérivées partielles elliptiques, paraboliques et non-localesDroniou, Jérôme 26 November 2004 (has links) (PDF)
Nous étudions:<br /><br />1) la régularité locale de solutions d'EDP elliptiques non-linéaires à données mesures<br /><br />2) des schémas numériques de type volumes finis pour équations elliptiques à seconds membres peu réguliers<br /><br />3) l'approximation, par sa régularisation parabolique, d'une loi de conservation scalaire avec conditions au bord<br /><br />4) des EDP faisant intervenir un opérateur non-local (de type laplacien fractionnaire).
|
4 |
Geodesics and PDE methods in transport modelsBrasco, Lorenzo 11 October 2010 (has links) (PDF)
Cette thèse est dédiée à l'étude des problèmes de transport optimal, alternatifs au problème de Monge-Kantorovich : ils apparaissent naturellement dans des applications pratiques, telles que la conception des réseaux de transport optimal ou la modélisation des problèmes de circulation urbaine. En particulier, nous considérons des problèmes où le coût du transport a une dèpendance non linèaire de la masse : typiquement dans ce type de problèmes, le côut pour déplacer une masse $m$ pour une longueur $\ell$ est $\varphi(m)\, \ell$, où $\varphi$ est une fonction assignée, obtenant ainsi un coût total de type $\sum\varphi(m) \ell$. \par Deux cas importants sont abordés en détail dans ce travail : le cas où la fonction $\varphi$ est subadditive (transport branché), de sorte que la masse a intérêt à voyager ensemble, de manière à réduire le coût total; le cas où $\varphi$ est superadditive (transport congestionné), où au contraire, la masse tend à diffuser autant que possible. \par Dans le cas du transport branché, nous introduisons deux nouveaux modèles: dans le premièr, le transport est décrit par des courbes de mesures de probabilité que minimisent une fonctionnelle de type géodésique (avec un coefficient que pénalise le mesures qui ne sont pas atomiques). Le second est plus dans l'esprit de la formulation de Benamou et Brenier pour les distances de Wasserstein : en particulier, le transport est décrit par paires de ``courbe de mesures--champ de vitesse'', liées par l'équation de continuité, qui minimisent une énergie adéquate (non convexe). Pour les deux modèles, on démontre l'existence de configurations minimales et l'équivalence avec d'autres formulations existantes dans la littèrature. \par En ce qui concerne le cas du transport congestionné, nous passons en revue deux modèles déjà existants, afin de prouver leur équivalence: alors que le premier de ces modèles peut être considéré comme une approche Lagrangienne du problème et il a des liens intéressants avec des questions d'équilibre pour la circulation urbaine, le second est un problème d'optimisation convexe avec contraintes de divergence. \par La preuve de l'équivalence entre les deux modèles constitue le corps principal de la deuxième partie de cette thèse et contient différents éléments d'intérêt, y compris: la théorie des flots des champs de vecteurs peu réguliers (DiPerna-Lions), la construction de Dacorogna et Moser pour les applications de transport et en particulier les résultats de régularité (que nous prouvons ici) pour une équation elliptique très dégénérés, qui ne semble pas avoir été beaucoup étudiée.
|
5 |
Analyse théorique et numérique des équations de la magnétohydrodynamique : application à l'effet dynamo / Theoretical and numerical analysis of the magnetohydrodynamics equations : application to dynamo actionLuddens, Francky 06 December 2012 (has links)
On s'intéresse dans ce mémoire aux équations de la magnétohydrodynamique (MHD) dans des milieux hétérogènes, i.e. dans des milieux pouvant présenter des variations (éventuellement brutales) de propriétés physiques. En particulier, on met ici l'accent sur la résolution des équations de Maxwell dans des milieux avec des propriétés magnétiques inhomogènes. On présentera une méthode non standard pour résoudre ce problème à l'aide d'éléments finis de Lagrange. On évoquera ensuite l'implémentation dans le code SFEMaNS, développé depuis 2002 par J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre et A. Ribeiro, ainsi que les premiers résultats obtenus dans les simulations de dynamo. Nous nous intéresserons par exemple au cas de la dynamo dite de Von Kármán, afin de comprendre l'expérience VKS2. En outre, nous aborderons des cas de dynamo en précession, ou encore le problème de la dynamo au sein d'un écoulement de Taylor-Couette. / We focus on the magnetohydrodynamics (MHD) equations in hetereogeneous media, i.e. media with (possibly brutal) variations on the physical properties. In particular, we are interested in solving the Maxwell equations with discontinuous magnetic properties. We introduce a method that is, to the best of our knowledge, new to solve this problem using only Lagrange Finite Elements. We then discuss its implementation in SFEMaNS, a numerical code developped since 2002 by J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre and A. Ribeiro. We show the results of the first dynamo simulations we have been able to make with this solver. For instance, we present a kinematic dynamo in a VKS setup, as well as some results about dynamo action induced either by a Taylor-Couette flow, or by a precessionnally driven flow.
|
6 |
Déformations de métriques Einstein sur des<br />variétés à singularités coniquesMontcouquiol, Grégoire 06 December 2005 (has links) (PDF)
Partant d'une cône-variété hyperbolique compacte de dimension n>2, on étudie les déformations de la métrique dans le but d'obtenir des cônes-variétés Einstein. Dans le cas où le lieu singulier est une sous-variété fermée de codimension 2 et que tous les angles coniques sont plus petits que 2pi, on montre qu'il n'existe pas de déformations Einstein infinitésimales non triviales préservant les angles coniques. Ce résultat peut s'interpréter comme une généralisation en dimension supérieure du célèbre théorème de Hodgson et Kerckhoff sur les déformations des cônes-variétés hyperboliques de dimension 3.<br />Si tous les angles coniques sont inférieurs à pi, on donne ensuite une construction qui à chaque variation donnée des angles associe une déformation Einstein infinitésimale correspondante.
|
7 |
Analyse théorique et numérique des équations de la magnétohydrodynamique : application à l'effet dynamoLuddens, Francky 06 December 2012 (has links) (PDF)
On s'intéresse dans ce mémoire aux équations de la magnétohydrodynamique (MHD) dans des milieux hétérogènes, i.e. dans des milieux pouvant présenter des variations (éventuellement brutales) de propriétés physiques. En particulier, on met ici l'accent sur la résolution des équations de Maxwell dans des milieux avec des propriétés magnétiques inhomogènes. On présentera une méthode non standard pour résoudre ce problème à l'aide d'éléments finis de Lagrange. On évoquera ensuite l'implémentation dans le code SFEMaNS, développé depuis 2002 par J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre et A. Ribeiro, ainsi que les premiers résultats obtenus dans les simulations de dynamo. Nous nous intéresserons par exemple au cas de la dynamo dite de Von Kármán, afin de comprendre l'expérience VKS2. En outre, nous aborderons des cas de dynamo en précession, ou encore le problème de la dynamo au sein d'un écoulement de Taylor-Couette.
|
8 |
Multi-scale modeling and asymptotic analysis for neuronal synapses and networks / Modélisation multi-échelle et analyse asymptotique pour les synapses et les réseaux neuronauxGuerrier, Claire 17 December 2015 (has links)
Dans cette thèse, nous étudions plusieurs structures neuronales à différentes échelles allant des synapses aux réseaux neuronaux. Notre objectif est de développer et analyser des modèles mathématiques, afin de déterminer comment les propriétés des synapses au niveau moléculaire façonnent leur activité, et se propagent au niveau du réseau. Ce changement d’échelle peut être formulé et analysé à l’aide de plusieurs outils tels que les équations aux dérivées partielles, les processus stochastiques ou les simulations numériques. Dans la première partie, nous calculons le temps moyen pour qu’une particule brownienne arrive à une petite ouverture définie comme le cylindre faisant la jonction entre deux sphères tangentes. La méthode repose sur une transformation conforme de Möbius appliquée à l’équation de Laplace. Nous estimons également, lorsque la particule se trouve dans un voisinage de l’ouverture, la probabilité d’atteindre l’ouverture avant de quitter le voisinage. De nouveau, cette probabilité est exprimée à l’aide d’une équation de Laplace, avec des conditions aux limites mixtes. En utilisant ces résultats, nous développons un modèle et des simulations stochastiques pour étudier la libération vésiculaire au niveau des synapses, en tenant compte de leur géométrie particulière. Nous étudions ensuite le rôle de plusieurs paramètres tels que le positionnement des canaux calciques, le nombre d’ions entrant après un potentiel d’action, ou encore l’organisation de la zone active. Dans la deuxième partie, nous développons un modèle pour le terminal pré- synaptique, formulé dans un premier temps comme un problème de réaction-diffusion dans un microdomaine confiné, où des particules browniennes doivent se lier à de petits sites cibles. Nous développons ensuite deux modèle simplifiés. Le premier modèle couple un système d’équations d’action de masse à un ensemble d’équations de Markov, et permet d’obtenir des résultats analytiques. Dans un deuxième temps, nous developpons un modèle stochastique basé sur des équations de taux poissonniens, qui dérive de la théorie du premier temps de passage et de l’analyse précédente. Ce modèle permet de réaliser des simulations stochastiques rapides, qui donnent les mêmes résultats que les simulations browniennes naïves et interminables. Dans la dernière partie, nous présentons un modèle d’oscillations dans un réseau de neurones, dans le contexte du rythme respiratoire. Nous developpons un modèle basé sur les lois d’action de masse représentant la dynamique synaptique d’un neurone, et montrons comment l’activité synaptique au niveau des neurones conduit à l’émergence d’oscillations au niveau du réseau. Nous comparons notre modèle à plusieurs études expérimentales, et confirmons que le rythme respiratoire chez la souris au repos est contrôlé par l’excitation récurrente des neurones découlant de leur activité spontanée au sein du réseau. / In the present PhD thesis, we study neuronal structures at different scales, from synapses to neural networks. Our goal is to develop mathematical models and their analysis, in order to determine how the properties of synapses at the molecular level shape their activity and propagate to the network level. This change of scale can be formulated and analyzed using several tools such as partial differential equations, stochastic processes and numerical simulations. In the first part, we compute the mean time for a Brownian particle to arrive at a narrow opening defined as the small cylinder joining two tangent spheres. The method relies on Möbius conformal transformation applied to the Laplace equation. We also estimate, when the particle starts inside a boundary layer near the hole, the splitting probability to reach the hole before leaving the boundary layer, which is also expressed using a mixed boundary-value Laplace equation. Using these results, we develop model equations and their corresponding stochastic simulations to study vesicular release at neuronal synapses, taking into account their specific geometry. We then investigate the role of several parameters such as channel positioning, the number of entering ions, or the organization of the active zone. In the second part, we build a model for the pre-synaptic terminal, formulated in an initial stage as a reaction-diffusion problem in a confined microdomain, where Brownian particles have to bind to small target sites. We coarse-grain this model into two reduced ones. The first model couples a system of mass action equations to a set of Markov equations, which allows to obtain analytical results. We develop in a second phase a stochastic model based on Poissonian rate equations, which is derived from the mean first passage time theory and the previous analysis. This model allows fast stochastic simulations, that give the same results than the corresponding naïve and endless Brownian simulations. In the final part, we present a neural network model of bursting oscillations in the context of the respiratory rhythm. We build a mass action model for the synaptic dynamic of a single neuron and show how the synaptic activity between individual neurons leads to the emergence of oscillations at the network level. We benchmark the model against several experimental studies, and confirm that respiratory rhythm in resting mice is controlled by recurrent excitation arising from the spontaneous activity of the neurons within the network.
|
9 |
Équations et systèmes de réaction-diffusion en milieux hétérogènes et applications / Reaction-diffusion equations and systems in heterogeneous media and applicationsDucasse, Romain 25 June 2018 (has links)
Cette thèse est consacrée à l'étude des équations et systèmes de réaction-diffusion dans des milieux hétérogènes. Elle est divisée en deux parties. La première est dédiée à l'étude des équations de réaction-diffusion dans des milieux périodiques. Nous nous intéressons en particulier aux équations posées dans des domaines qui ne sont pas l'espace entier $\mathbb{R}^{N}$, mais des domaines périodiques, avec des "obstacles". Dans un premier chapitre, nous étudions l'effet de la géométrie du domaine sur la vitesse d'invasion des solutions. Après avoir dérivé une formule de type Freidlin-Gartner, nous construisons des domaines où la vitesse d'invasion est strictement inférieure à la vitesse critique des fronts. Nous donnons également des critères géométriques qui garantissent l'existence de directions où l'invasion se produit à la vitesse critique. Dans le chapitre suivant, nous donnons des conditions nécessaires et suffisantes pour garantir que l'invasion ait lieu, après quoi nous construisons des domaines où des phénomènes intermédiaires (blocage, invasion orientée) se produisent. La deuxième partie de cette thèse est consacrée à l'étude de modèles décrivant l'influence de lignes à diffusion rapide (une route, par exemple) sur la propagation d'espèces invasives. Il a en effet été observé que certaines espèces, dont le moustique-tigre, envahissent plus rapidement que prévu certaines zones proches du réseau routier. Nous étudions deux modèles : le premier décrit l'influence d'une route courbe sur la propagation. Nous nous intéressons en particulier au cas de deux routes non-parallèles. Le second modèle décrit l'influence d'une route sur une niche écologique, en présence d'un changement climatique. Le résultat principal est que l'effet de la route est ambivalent : si la niche est stationnaire, alors l'effet de la route est délétère. Cependant, si la niche se déplace, suite à un changement climatique, nous montrons que la route peut permettre à une population de survivre. Pour étudier ce second modèle, nous développons une notion de valeur propre principale généralisée pour des systèmes de type KPP, et nous dérivons une inégalité de Harnack, qui est nouvelle pour ce type de systèmes. / This thesis is dedicated to the study of reaction-diffusion equations and systems in heterogeneous media. It is divided into two parts. The first one is devoted to the study of reaction-diffusion equations in periodic media. We pay a particular attention to equations set on domains that are not the whole space $\mathbb{R}^{N}$, but periodic domains, with "obstacles". In a first chapter, we study how the geometry of the domain can influence the speed of invasion of solutions. After establishing a Freidlin-Gartner type formula, we construct domains where the speed of invasion is strictly less than the critical speed of fronts. We also give geometric criteria to ensure the existence of directions where the invasion occurs with the critical speed. In the second chapter, we give necessary and sufficient conditions to ensure that invasion occurs, and we construct domains where intermediate phenomena (blocking, oriented invasion) occur. The second part of this thesis is dedicated to the study of models describing the influence of lines with fast diffusion (a road, for instance) on the propagation of invasive species. Indeed, it was observed that some species, such as the tiger mosquito, invade faster than expected some areas along the road-network. We study two models : the first one describes the influence of a curved road on the propagation. We study in particular the case of two non-parallel roads. The second model describes the influence of a road on an ecological niche, in presence of climate change. The main result is that the effect of the road is ambivalent: if the niche is stationary, then effect of the road is deleterious. However, if the niche moves, because of a shifting climate, the road can actually help the population to persist. To study this model, we introduce a notion of generalized principal eigenvalue for KPP-type systems, and we derive a Harnack inequality, that is new for this type of systems.
|
10 |
Etude de Certaines Equations aux Dérivées PartiellesDroniou, Jérôme 18 June 2001 (has links) (PDF)
La première partie de ce travail concerne les équations elliptiques non coercitives. Nous prouvons, tout d'abord dans un cadre linéaire, l'existence et l'unicité d'une solution faible dans l'espace d'énergie habituel $H^1(\Omega)$ pour une classe d'équations de convection-diffusion pour lesquelles le terme de convection provoque la perte de coercitivité. Nous prouvons des résultats de régularité höldérienne sur les solutions de ces équations qui permettent ensuite de résoudre ces mêmes équations avec un second membre mesure. Nous étendons aussi les résultats d'existence et d'unicité d'une solution dans des cas variationnels non-linéaires non-coercitifs et nous étudions, pour une équation elliptique linéaire non-coercitive, la convergence d'un schéma volumes finis. La deuxième partie concerne l'unicité des solutions à des problèmes elliptiques non-linéaires avec seconds membres mesure. La troisième partie aborde la question de la condition d'hyperbolicité des systèmes du premier ordre à coefficients constants. Nous prouvons une CNS pour qu'un tel système ait une solution pour toute condition initiale de type Riemann (condition initiale naturelle dans l'étude des discrétisations numériques de ces systèmes). A l'aide d'un système particulier, nous étudions ensuite la différence entre notre CNS et les diverses conditions d'hyperbolicité de la littérature, puis nous prouvons que la solution d'un système hyperbolique n'est pas toujours stable par rapport au flux. La quatrième partie rassemble quelques autres travaux. Le premier concerne la densité dans $W^{1,p}(\Omega)$ des fonctions régulières satisfaisant une condition de Neumann. Le second est l'étude d'une discrétisation EF mixtes---VF pour un écoulement diphasique à travers un milieu poreux. Le troisième et dernier est l'étude des mesures sur $]0,T[\times \Omega$ ne chargeant pas le boréliens de capacité parabolique nulle et l'application de cette étude à la résolution d'une équation parabolique non-linéaire avec second membre mesure.
|
Page generated in 0.1225 seconds