Dans le but de réduire la consommation en carburant, les émissions de CO2 et les polluants tout en maintenant le haut rendement des moteurs, de nouveaux modes de combustions ont été étudiés et sont d’excellents candidats pour remplacer les moteurs conventionnels. En particulier, le mode HCCI a montré une excellente aptitude pour répondre à ces objectifs. Néanmoins, en dépit de ses avantages, de nombreux challenges sont à surmonter avant de permettre le développement de tels moteurs. Parmi eux, obtenir un contrôle efficace de la totalité de ce processus de combustion sur un large domaine d’utilisation demeure le principal défi. Ces travaux de thèse s’intéressent à l’utilisation des espèces chimiques oxydantes comme un moyen robuste de contrôle de la combustion HCCI. En raison de ces fortes propriétés oxydantes, l’ozone a été la principale molécule étudié. De plus, son intérêt est renforcé par le fait que l’ozone peut être produit au sein d’un véhicule au moyen de petits générateurs, mais cela peut aussi produire des oxydes d’azote. Ces recherches ont été effectuées au moyen d’un banc moteur monocylindre HCCI et couplées avec des simulations de cinétique chimique. Les deux principaux objectifs ont été : (1) Evaluer le potentiel d’utilisation d’un générateur d’ozone pour contrôler la combustion HCCI. L’impact de plusieurs espèces chimiques oxydantes, ozone and NOx, a été étudié sur la combustion de l’isooctane. De plus, un contrôle dynamique a été mis en place avec succès. (2) Comparer l’influence de l’ozone sur la combustion de l’isooctane et de carburants alternatifs. Des carburants à forte teneur en méthane et des alcools ont été étudiés en raison de leur forte résistance à l’autoinflammation et de leur structure chimique. / To reduce the fuel consumption, CO2 emissions and pollutant emissions while keep improving thermal efficiency of engines, alternative combustion modes are being investigated as good candidates to replace spark-ignited and diesel engines. In particular, Homogeneous Charge Compression Ignition (HCCI) engines have proven their potential to meet these requirements. However, despite of these advantages, several challenges remain to be addressed prior to the widespread implementation of HCCI engines. Among them, the control of the overall combustion process in such an engine over the full operating range is still considered as the main challenge to overcome. The present work introduces the use of oxidizing chemical species seeded in the intake system as a robust control technique for HCCI combustion process. In particular, ozone was examined due to its strong oxidizing characteristics. Moreover, ozone can be easily produced on-board a real vehicle from the intake oxygen thanks to small ozone generators, but can also lead to the production of NOx. Investigations were carried out using a single-cylinder HCCI engine and kinetics computation analysis. The two main objectives of this work are: (1) Evaluate the potential of using ozone generator to control the HCCI combustion. Along these lines, the interaction between NOx and ozone was investigated for isooctane as fuel and a real time control of the HCCI combustion was implemented and successfully tested. (2) Compare the influence of ozone on the combustion of isooctane and alternative fuels. Methane-based fuels (methane/propane and methane/hydrogen mixtures) and alcohols (methanol, ethanol, n-butanol) were selected due to their higher resistance to autoignition and their different chemical structure.
Identifer | oai:union.ndltd.org:theses.fr/2016ORLE2014 |
Date | 08 June 2016 |
Creators | Masurier, Jean-Baptiste |
Contributors | Orléans, Foucher, Fabrice, Dayma, Guillaume |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0521 seconds