Estudia la ecuación de onda no lineal que modela la actividad neuronal del cerebro. Busca estudiar la existencia de la solución débil global del sistema dado utilizando el método de Faedo - Galerkin y además establecer la unicidad y estabilidad de la soluci´on utilizando criterios de desigualdades integrales e inmersiones de Sobolev. Los términos a(u, p)ut y b(u, p, pt) son términos no lineales que caracterizan la actividad neuronal del modelo. El estudio del sistema es planteado por Mauhamad y Maitine, quienes prueban que el sistema tiene una única solución estable, bajo supuestos datos reales. De hecho, estos supuestos están motivados por el modelo de la actividad cerebral física subyacente, que conduce a una ecuación que es un caso particular de la ecuación que se va a desenvolver. / Tesis
Identifer | oai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/9999 |
Date | January 2013 |
Creators | Pon Quispe, Julio César |
Contributors | Zegarra Garay, María Natividad |
Publisher | Universidad Nacional Mayor de San Marcos |
Source Sets | Universidad Nacional Mayor de San Marcos - SISBIB PERU |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/bachelorThesis |
Format | application/pdf |
Source | Universidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM |
Rights | info:eu-repo/semantics/openAccess, https://creativecommons.org/licenses/by-nc-sa/4.0/ |
Page generated in 0.002 seconds