Return to search

Biogeneration of lipophenols by lipases using selected substrate models

The objective of the research was to carry out the biogeneration of lipophenols by enzymatic esterification of tricaprylin and caprylic acid with catechin and catechol in a model hexane system. Commercial lipases, including Lipase N from Rhizopus niveus, Lipozyme IM from Mucor miehei and Novozym 435 from Candida antarctica were used throughout this study. The effects of reaction time, incubation temperatures and agitation speeds on enzymatic hydrolytic activity were investigated to determine the optimal conditions for biocatalysis. The optimal temperatures for biocatalysis were determined to be 37.5°C for Lipase N, and 55°C for Lipozyme IM and Novozym 435; the optimum agitation speed was 100 rpm. Using Lipase N, maximum hydrolysis of 1.66 mumol free fatty acids/mL was obtained after 1.5 days of incubation, while with Lipozyme IM, maximum hydrolysis of 8.1 and 8.5 mumol free fatty acids/mL was obtained after 1 and 4 days, respectively. With Novozym 435, the highest hydrolysis of 4.0 and 6.1 mumol free fatty acids/mL were found after 2 and 9 days, respectively.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.79113
Date January 2003
CreatorsPetel, Tamara
ContributorsKermasha, Selim (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Food Science and Agricultural Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001985015, proquestno: AAIMQ88282, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds