Return to search

Caracterização molecular de biopolímeros em solução utilizando simulação computacional / MOLECULAR CHARACTERIZATION OF BIOPOLIMERS IN SOLUTION BY COMPUTATIONAL SIMULATION

Made available in DSpace on 2016-06-02T20:34:11Z (GMT). No. of bitstreams: 1
2275.pdf: 3782224 bytes, checksum: 7d2e45951c92f58bd422ef52a5aaddca (MD5)
Previous issue date: 2009-02-17 / Universidade Federal de Sao Carlos / Computer simulation methods were used to characterize the structure and molecular properties of natural and synthetic biopolymers in aqueous solution. The polysaccharides chitin and chitosan, and aliphatic polypeptides were studied.
The interest on the chitin and chitosan biopolymers is because of their biodegradability, biocompatibility and potential use as pharmaceutical and technological product. Molecular dynamics simulations have been used to characterize the structure and the solubility of the chitins and chitosans in aqueous solution. The simulated systems were composed by solvated chains, and nanoparticles composed by chains packed in a parallel and anti-parallel fashion, with different percentage and distribution of acetyl groups. The 100% acetylated chitin, whether isolated or in the form of α/β-chitin, adopt the 2-fold helix conformation with φ and ψ values similar to those on crystalline state. The ionic strength affects the kinetics, but not the conformational equilibrium. In
solution, the intramolecular hydrogen bond HO3(n)···O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonding to water molecules in a well-defined orientation. On the other hand, chitosan with small percentage and random distribution of acetil groups can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atom of insoluble chitosan (basic pH) are nearly identical to those quantities in chitin. Chitin and chitosan nanoparticles with block distribution of acetyl groups favor the formation of intermolecular hydrogen bonds and hydrophobic interactions, resulting in more stable aggregates. The water mobility and orientation around polysaccharide chain (highly affected by electrostatic forces) is responsible for the aggregation and solubility of the chitin and chitosan biopolymers. Moreover, a sequential QM/MM methodology is used to study the α-helix stability of aliphatic polypeptides in water solution. The understanding of the folding process is one
of the greatest challenges of biophysics, and the first step is the understanding of the formation and stabilization of the secondary structure of a polypeptide. The calculated heat of formation and free energy of solvation showed that the size of
side chain is directly related to the α-helix stability. The results suggest that the helix-coil transition of a polypeptide is governed by the equilibrium between the energy used in the folding process and the energy released in the solvation
process, showing the solvent effect on α-helix stabilization. The validation of the sequential QM/MM methodology showed that this method is suitable to study the helix-coil transition of polypeptides in solution. The methodology is therefore useful to study solvation effects on the properties of compounds with many conformational degrees of freedom. / Neste trabalho, métodos de simulação computacional foram usados para caracterizar a estrutura e propriedades moleculares de biopolímeros naturais e sintéticos em solução aquosa. Os polissacarídeos quitina e quitosana, e polipeptídeos alifáticos foram os biopolímeros estudados. O interesse nos biopolímeros quitina e quitosana é devido à suas biodegradabilidade, biocompatibilidade e potencial uso como produto farmacêutico ou tecnológico. No presente trabalho, simulações por Dinâmica Molecular foram utilizadas para
caracterizar a estrutura e a solubilidade de quitinas e quitosanas em solução aquosa. Os sistemas modelados eram compostos por cadeias solvatadas e nanopartículas formadas por cadeias empacotadas paralelamente e de forma
antiparalela, com diferentes percentagens e distribuição de grupos acetil. A quitina 100% acetilada, tanto na forma isolada ou na forma de α/β-quitina adota a conformação de hélice 2, com valores de φ e ψ similares aos da sua estrutura
cristalina. A força iônica afeta a cinética, mas não o equilíbrio conformacional. Em solução, as ligações de hidrogênio intramolecular HO3(n)···O5(n+1), responsável por estabilizar o motivo helicoidal hélice 2, são estabilizadas por ligações de hidrogênio com moléculas de água em orientações bem definidas. Por outro lado, a quitosana com pequena percentagem e distribuição randômica de grupos acetil pode adotar cinco motivos estruturais e seu equilíbrio conformacional é altamente dependente do pH. O padrão de ligação de hidrogênio e a solvatação ao redor do átomo O3 da quitina insolúvel (pH básico) é quase idêntico ao observado para a quitina. As nanopartículas de quitina e quitosana com distribuição em blocos de grupos acetil favorece a formação de
ligações de hidrogênio intermolecular e interações hidrofóbicas, resultando em agregados mais estáveis. A mobilidade e a orientação das moléculas de água ao redor da cadeia de polissacarídeo (altamente afetada por forças eletrostáticas) é responsável pela agregação e solubilidade dos biopolímeros quitina e quitosana. Além disso, a metodologia QM/MM sequencial foi utilizada para estudar a
estabilidade da α-hélice de polipeptídeos alifáticos em solução. Sabe-se que o entendimento do processo de enovelamento é um dos grandes desafios da biofísica, e o primeiro passo consiste em entender a formação e a estabilização da estrutura de polipeptídeos. Os valores de calor de formação e energia livre de solvatação mostraram que o tamanho da cadeia lateral é diretamente proporcional à estabilidade da α-hélice. Os resultados sugerem que o processo de enovelamento-desenovelamento de polipeptídeos é governado pelo equilíbrio entre a energia utilizada para enovelar o peptídeo e a energia liberada pelo processo de solvatação, mostrando o efeito do solvente na estabilização da α-hélice. A validação da metodologia QM/MM sequencial utilizada mostrou ser adequada para o estudo do processo de enovelamento desenovelamento de polipeptídeos em solução, e útil no estudo da estrutura eletrônica e do efeito do
solvente em compostos que possuam elevado grau de liberdade conformacional.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/6117
Date17 February 2009
CreatorsFranca, Eduardo de Faria
ContributorsFreitas, Luiz Carlos Gomide
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Química, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0128 seconds