Return to search

Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide / Evaluation of the Euler-Euler approach for large eddy simulation of combustion chamber operated with liquid fuel

Les turbines aéronautiques doivent satisfaire à des normes d’émissions polluantes toujours en baisse. La qualité du mélange du carburant et de l’air dans la chambre de combustion est responsable de la formation de polluants nocifs pour l’environnement. La simulation aux grandes échelles (LES) permet d’étudier les mécanismes de mélanges turbulents de l’air et du carburant. La prise en compte de l’aspect liquide du carburant injecté devient nécessaire pour prédire correctement l’apparition de vapeur de carburant au sein du foyer. Le but de cette thèse est évaluer la fiabilité des simulations LES Euler-Euler dans une configuration complexe. Les processus d’injection, et d’évaporation du carburant liquide sont analysés et modélisés dans les simulations LES car ils pilotent la formation de vapeur de carburant. Les méthodes numériques pour résoudre les équations continues de la phase dispersée doivent permettre des simulations précises et robustes dans une configuration représentative d’une chambre de combustion. Les simulations présentées dans ces travaux reproduisent l’écoulement diphasique évaporant non-réactif du banc d’essai Mercato. Ce banc est équipé d’un système d’injection d’air vrillé et d’un atomiseur pressurisé-swirlé de kérosène typiques des foyers aéronautiques réels. Dans ces travaux, le modèle pour l’injection de liquide FIM-UR a été développé pour définir les conditions limites conduisant à un spray issu d’un atomiseur préssurisé-swirlé. Le kérosène employé dans les campagnes expérimentales est modélisé dans les simulations par un composé permettant d’obtenir des temps d’évaporation réalistes. Trois stratégies numériques ont été mises en place sur la configuration Mercato. Les comparaisons des résultats numériques aux mesures expérimentales ont permis d’évaluer la stratégie numérique conduisant à la meilleure précision. L’utilisation du schéma centré TTGC associé à un opérateur de viscosité artificielle localisée par un senseur adapté est optimale lorsque l’équation sur l’énergie décorrélée des gouttes est résolue. Cette stratégie permet de contrôler la localisation et les niveaux de viscosité par rapport à un schéma décentré. Les termes sources liés au mouvement mésoscopique permettent de redistribuer l’énergie dans les zones de compression ou de détente de la phase dispersée, et d’obtenir les bonnes répartitions des fluctuations dans la chambre de combustion. La stratégie retenue est comparée aux statistiques de la dynamique du spray résolu par une approche Lagrangienne employant la même injection monodispersse. Le méthode Euler-Euler conduit à la même précision de la dynamique de la phase dispersée que la méthode Euler-Lagrange. L’accès à l’évolution instationnaire de l’écoulement permet d’identifier les mêmes mécanismes de dispersion et de mélange dans les deux simulations. Des différences sur la répartition de diamètre moyen et de carburant dans la chambre ont été mis en évidence et reliés à la polydispersion locale qui n’est pas résolue dans l’approche Euler-Euler monodisperse et qui apparaît naturellement dans l’approche Euler-Lagrange malgré l’injection monodisperse. / Aeronautical gas turbines are facing growing demands on emission reductions. Indeed, the quality of the air-fuel mixture directly triggers the formation of pollutants degrading the environment. Large Eddy Simulation is an accurate numerical method to predict turbulent mixing in combustors. Adding the liquid phase of the fuel in these simulations also becomes necessary to properly predict the injection process and the vaporization of the fuel in the combustion chamber. The purpose of this dissertation is to evaluate the accuracy and reliability of Euler-Euler LES in a complex combustor configuration. The injection and vaporization processes of the fuel liquid phase are both modeled in the present LES as they drive the formation of the fuel gas phase. Moreover, the numerical methods that solve the continuous equations of the disperse phase must be accurate and robust in realistic combustor configurations. The simulations shown in the present study reproduce the non-reactive two-phase flow of the ONERA Mercato test bench. The experimental set-up is equipped with an air-swirler injection system and a pressure-swirled atomizer typical of actual turboengine combustors. In the present work the FIM-UR liquid injection model has been developed. It creates boundary conditions profiles for a liquid spray produced by a pressure-swirled atomizer. Kerosene used in the experiments is modeled in the present numerical simulations by a single species leading to a good estimate of the vaporization rate. Three numerical strategies have been tested on the Mercato configuration. Comparisons between experimental and LES results help defining the most accurate numerical strategy. The use of the centered numerical scheme TTGC stabilized by a localized artificial viscosity operator is best when the random uncorrelated energy of droplets is also resolved. Unlike an upwind numerical scheme, the selected strategy allows the user to control where and how much artificial viscosity is added. The source terms coming from the mesoscopic movement redistribute the energy in the compression or expanding zones of the disperse phase, and provide the proper distribution of fluctuations in the combustion chamber. The obtained strategy is compared with the statistics provided by a Lagrangian description of the liquid spray in the same mono-disperse injection. The Euler-Euler approach leads to the same accuracy in the same spray dynamics of the disperse phase as in the Euler-Lagrange method. Both unsteady flow simulations also provide the same dispersion and mixing processes in the Mercato set-up. Differences on the mean diameter and the fuel distribution in the combustion chamber are seen and related to the local poly-dispersion that cannot be resolved in the mono-disperse Euler-Euler approach and that naturally appear in the Euler-Lagrange method despite the mono-disperse injection.

Identiferoai:union.ndltd.org:theses.fr/2009INPT066H
Date14 December 2009
CreatorsSanjosé, Marlène
ContributorsToulouse, INPT, Cuenot, Bénédicte, Vermorel, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds