• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Testing of an Integrated Liquid-Fuel-Injector/Plasma-Igniter for Scramjets

Anderson, Cody Dean 10 March 2004 (has links)
A newly designed liquid fuel (kerosene) aeroramp injector/plasma igniter was tested in cold flow using the Virginia Tech supersonic wind tunnel at Mach 2.4. The liquid fuel (kerosene) injector is flush wall mounted and consists of a 2 hole aeroramp array of impinging jets that are oriented in a manner to improve mixing and atomization of the liquid jets. The two jets are angled downstream at 40 degrees and have a toe-in angle of 60 degrees. The plasma torch used nitrogen and air as feedstocks and was placed downstream of the injector as an ignition aid. First, schlieren and shadowgraph photographs were taken of the injector flow to study the behavior of the jets, shape of the plume, and penetration of the liquid jet. The liquid fuel aeroramp was found to have better penetration than a single, round jet at 40 degrees. However, the liquid fuel aeroramp does not penetrate as well as an upstream/downstream impinging jet in a plane aligned with the flow. Next, the Sauter mean droplet diameter distribution was measured downstream of the injector. The droplet diameter was found to vary from 21 to 37 microns and the atomization of the injector does not appear to improve beyond 90 effective jet diameters from the liquid fuel aeroramp. These results were then used to decide on an initial location for the plasma torch. The combined liquid injector/plasma torch system was tested in an unheated (300 K) Mach 2.4 flow with a total pressure of 345 kPa. The liquid fuel (kerosene) volumetric flow rate was varied from 0.66 lpm to 1.22 lpm for the combined liquid injector/plasma torch system. During this testing the plasma torch was operated from 1000 to 5000 watts with 25 slpm of nitrogen and air as feedstocks. The interaction between the spray plume and the plasma torch was observed with direct photographs, videos, and photographs through an OH filter. It is difficult to say that any combustion is present from these photographs. Of course, it would be surprising if much combustion did occur under these cold-flow, low-pressure conditions. Differences between the interaction of the spray plume and the plasma torch with nitrogen and air as feedstocks were documented. According to the OH wavelength filtered photographs the liquid fuel flow rate does appear to have an effect on the height and width of the bright plume. As the liquid fuel flow rate increases the bright plume increases in height by 30% and increases in width slightly (2%). While, a decrease in liquid fuel flow rate resulted in an increase in height by 9% and an increase in width by 10%. Thus, as the liquid fuel flow rate varies the width and height of the bright plume appear to always increase. This can be explained by noticing that the shape of the bright plume changes as the liquid fuel flow rate varies and perhaps anode erosion during testing also plays a part in this variation of the bright plume. From the OH wavelength filtered photographs it was also shown that the bright plume appears to decrease in width by 9% and increase in height by 22% when the plasma torch is set at a lower power setting. When air is used as the torch feedstock, instead of nitrogen, the penetration of the bright plume can increase by as much as 19% in width and 17% in height. It was also found that the height and width of the bright plume decreased slightly (2%) as the fuel flow rate increased when using air as the torch feedstock. Testing in a hot-flow facility is planned. / Master of Science
2

Chemical Vapor Deposition of Thin Film Materials for Copper Interconnects in Microelectronics

Au, Yeung Billy 24 July 2012 (has links)
The packing density of microelectronic devices has increased exponentially over the past four decades. Continuous enhancements in device performance and functionality have been achieved by the introduction of new materials and fabrication techniques. This thesis summarizes the thin film materials and metallization processes by chemical vapor deposition (CVD) developed during my graduate study with Professor Gordon at Harvard University. These materials and processes have the potential to build future generations of microelectronic devices with higher speeds and longer lifetimes. Manganese Silicate Diffusion Barrier: Highly conformal, amorphous and insulating manganese silicate \((MnSi_xO_y)\) layers are formed along the walls of trenches in interconnects by CVD using a manganese amidinate precursor vapor that reacts with the surfaces of the insulators. These \((MnSi_xO_y)\) layers are excellent barriers to diffusion of copper, oxygen and water. Manganese Capping Layer: A selective CVD manganese capping process strengthens the interface between copper and dielectric insulators to improve the electromigration reliability of the interconnects. High selectivity is achieved by deactivating the insulator surfaces using vapors containing reactive methylsilyl groups. Manganese at the Cu/insulator interface greatly increases the strength of adhesion between the copper and the insulator. Bottom-up Filling of Copper and Alloy in Narrow Features: Narrow trenches, with widths narrow than 30 nm and aspect ratios up to 9:1, can be filled with copper or copper-manganese alloy in a bottom-up fashion using a surfactant-catalyzed CVD process. A conformal manganese nitride \((Mn_4N)\) layer serves as a diffusion barrier and adhesion layer. Iodine atoms chemisorb on the \(Mn_4N\) layer and are then released to act as a catalytic surfactant on the surface of the growing copper layer to achieve void-free, bottom-up filling. Upon post-annealing, manganese in the alloy diffuses out from the copper and forms a self-aligned barrier in the surface of the insulator. Conformal Seed Layers for Plating Through-Silicon Vias: Through-silicon vias (TSV) will speed up interconnections between chips. Conformal, smooth and continuous seed layers in TSV holes with aspect ratios greater than 25:1 can be prepared using vapor deposition techniques. \(Mn_4N\) is deposited conformally on the silica surface by CVD to provide strong adhesion at Cu/insulator interface. Conformal copper or Cu-Mn alloy seed layers are then deposited by an iodine-catalyzed direct-liquid-injection (DLI) CVD process. / Chemistry and Chemical Biology
3

Growth of Clonal Red Maples on Varying Site Conditions in Mississippi and Response to Pneumatic Fracturing and Liquid Injection

Fulgham, David Tildon 03 May 2019 (has links)
Trunk height, diameter, and stomatal conductance measurements were taken over a three-year time frame on clonal red maple cultivars [Acer rubrum ‘Frank Jr’] on two sites with varying conditions. Physiological and morphological effects on tree growth were measured on both sites in response to Pneumatic Fracturing (PF) and Liquid Injection (LI) treatments. The primary questions asked in study one were: (1) Does stomatal conductance differ among the two sites during mid-summer? and (2) Do height and diameter measures differ among the two sites? In study two, I asked: (1) Do height, diameter and stomatal conductance differ between site modification treatments within each site? Control samples on the Site 2 had significantly more growth than the controls on the Site 1. PF and LI treatments showed significantly more diameter growth on the Site 1 while a significant difference was also seen in stomatal conductance following treatments on Site 1.
4

Simulations aux grandes échelles de l’écoulement diphasique dans un brûleur aéronautique par une approche Euler-Lagrange / Large-Eddy Simulation of the two-phase flow in an aeronautical combustor using an Euler-Lagrange approach

Senoner, Jean-Mathieu 09 June 2010 (has links)
Les turbines à gaz aéronautiques doivent satisfaire des normes d'émissions polluantes toujours en baisse. La formation de polluants est directement liée à la qualité du mélange d’air et de carburant en amont du front de flamme. Ainsi, leur réduction implique une meilleure prédiction de la formation du spray et de son interaction avec l'écoulement turbulent gazeux. La simulation aux grandes échelles (SGE) semble un outil numérique approprié pour étudier ces mécanismes. Le but de cette thèse est d’évaluer l'impact de modèles d'injection simplifiés sur la SGE de l'écoulement diphasique évaporant d’une configuration complexe. La configuration cible choisie est un brûleur aéronautique installé sur le banc expérimental MERCATO. Le banc expérimental est equipé d’un système d’injection d'air vrillé et d’un système d'injection liquide avec un atomiseur pressurisé swirlé représentatif de foyers aéronautiques réels. Dans un premier temps, un modèle d'injection simplifié pour atomiseurs pressurisés swirlés négligeant les effets de l'atomisation sur la dynamique du spray est présenté. L'objectif principal de ce modèle réside dans la reproduction de conditions d’injection similaires pour des traitements Eulériens et Lagrangiens de la phase particulaire. Dans un second temps, la composante Lagrangienne de ce modèle d'injection est combinée à un modèle d'atomisation secondaire de la litérature pour permettre une prise en compte partielle des phénomènes de pulvérisation liquide. Les SGE de l'écoulement diphasique évaporant de la configuration MERCATO présentées comportent deux aspects. Premièrement, différents modèles d’injection sont évalués pour quantifier leur impact sur la dynamique de la phase particulaire. Deuxièmement, une comparaison de simulations Euler-Euler et Euler-Lagrange reposant sur un modèle d'injection unifié est effectuée. / Aeroautical gas turbines need to satisfy growingly stringent demands on pollutant emission. Pollutant emissions are directly related to the quality of fuel air mixing prior to combustion. Therefore, their reduction relies on a more accurate prediction of spray formation and interaction of the spray with the gaseous turbulent flowfield. Large-Eddy Simulation (LES) seems an adequate numerical tool to predict these mechanisms. The objective of this thesis is to evaluate the impact of simplified injection methods on the LES of the evaporating two-phase flow inside a complex geometry. The chosen target configuration is an aeronautical combustor installed on the MERCATO test-rig. The experimental setup includes an air-swirler injection system and a pressureswirl atomizer typical of realistic aeronautic combustors. In a first step, a simplified injection model for pressure swirl atomizers neglecting the impact of liquid disintegration on spray dynamics is presented. The main objective of this model lies in the reproduction of similar injection conditions for Eulerian and Lagrangian representations of the dispersed phase. In a second step, the Lagrangian injection method is combined to a secondary breakup model of the literature to partly account for the liquid disintegration process. The presented LES’s of the evaporating two-phase flow inside the MERCATO geometry consider two different aspects. First, the impact of injection modeling on spray dynamics is assessed. Second, Euler-Euler and Euler-Lagrange simulations relying on the common simplified injection model are compared.
5

Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines

Potier, Luc 24 May 2018 (has links) (PDF)
Combustion in cryogenic engines is a complex phenomenon, involving either liquid or supercritical fluids at high pressure, strong and fast oxidation chemistry, and high turbulence intensity. Due to extreme operating conditions, a particularly critical issue in rocket engine is wall heat transfer which requires efficient cooling of the combustor walls. The concern goes beyond material resistance: heat fluxes extracted through the chamber walls may be reused to reduce ergol mass or increase the power of the engine. In expander-type engine cycle, this is even more important since the heat extracted by the cooling system is used to drive the turbo-pumps that feed the chamber in fuel and oxidizer. The design of rocket combustors requires therefore an accurate prediction of wall heat flux. To understand and control the physics at play in such combustor, the Large Eddy Simulation (LES) approach is an efficient and reliable numerical tool. In this thesis work, the objective is to predict wall fluxes in a subcritical rocket engine configuration by means of LES. In such condition, ergols may be in their liquid state and it is necessary to model liquid jet atomization, dispersion and evaporation.The physics that have to be treated in such engine are: highly turbulent reactive flow, liquid jet atomization, fast and strong kinetic chemistry and finally important wall heat fluxes. This work first focuses on several modeling aspects that are needed to perform the target simulations. H2/O2 flames are driven by a very fast chemistry, modeled with a reduced mechanism validated on academic configurations for a large range of operating conditions in laminar pre- mixed and non-premixed flames. To form the spray issued from the atomization of liquid oxygen (LOx) an injection model is proposed based on empirical correlations. Finally, a wall law is employed to recover the wall fluxes without resolving directly the boundary layer. It has been specifically developed for important temperature gradients at the wall and validated on turbulent channel configurations by comparison with wall resolved LES. The above models are then applied first to the simulation of the CONFORTH sub-scale thrust chamber. This configuration studied on the MASCOTTE test facility (ONERA) has been measured in terms of wall temperature and heat flux. The LES shows a good agreement compared to experiment, which demonstrates the capability of LES to predict heat fluxes in rocket combustion chambers. Finally, the JAXA experiment conducted at JAXA/Kakuda space center to observe heat transfer enhancement brought by longitudinal ribs along the chamber inner walls is also simulated with the same methodology. Temperature and wall fluxes measured with smooth walls and ribbed walls are well recovered by LES. This confirms that the LES methodology proposed in this work is able to handle wall fluxes in complex geometries for rocket operating conditions.
6

Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide / Evaluation of the Euler-Euler approach for large eddy simulation of combustion chamber operated with liquid fuel

Sanjosé, Marlène 14 December 2009 (has links)
Les turbines aéronautiques doivent satisfaire à des normes d’émissions polluantes toujours en baisse. La qualité du mélange du carburant et de l’air dans la chambre de combustion est responsable de la formation de polluants nocifs pour l’environnement. La simulation aux grandes échelles (LES) permet d’étudier les mécanismes de mélanges turbulents de l’air et du carburant. La prise en compte de l’aspect liquide du carburant injecté devient nécessaire pour prédire correctement l’apparition de vapeur de carburant au sein du foyer. Le but de cette thèse est évaluer la fiabilité des simulations LES Euler-Euler dans une configuration complexe. Les processus d’injection, et d’évaporation du carburant liquide sont analysés et modélisés dans les simulations LES car ils pilotent la formation de vapeur de carburant. Les méthodes numériques pour résoudre les équations continues de la phase dispersée doivent permettre des simulations précises et robustes dans une configuration représentative d’une chambre de combustion. Les simulations présentées dans ces travaux reproduisent l’écoulement diphasique évaporant non-réactif du banc d’essai Mercato. Ce banc est équipé d’un système d’injection d’air vrillé et d’un atomiseur pressurisé-swirlé de kérosène typiques des foyers aéronautiques réels. Dans ces travaux, le modèle pour l’injection de liquide FIM-UR a été développé pour définir les conditions limites conduisant à un spray issu d’un atomiseur préssurisé-swirlé. Le kérosène employé dans les campagnes expérimentales est modélisé dans les simulations par un composé permettant d’obtenir des temps d’évaporation réalistes. Trois stratégies numériques ont été mises en place sur la configuration Mercato. Les comparaisons des résultats numériques aux mesures expérimentales ont permis d’évaluer la stratégie numérique conduisant à la meilleure précision. L’utilisation du schéma centré TTGC associé à un opérateur de viscosité artificielle localisée par un senseur adapté est optimale lorsque l’équation sur l’énergie décorrélée des gouttes est résolue. Cette stratégie permet de contrôler la localisation et les niveaux de viscosité par rapport à un schéma décentré. Les termes sources liés au mouvement mésoscopique permettent de redistribuer l’énergie dans les zones de compression ou de détente de la phase dispersée, et d’obtenir les bonnes répartitions des fluctuations dans la chambre de combustion. La stratégie retenue est comparée aux statistiques de la dynamique du spray résolu par une approche Lagrangienne employant la même injection monodispersse. Le méthode Euler-Euler conduit à la même précision de la dynamique de la phase dispersée que la méthode Euler-Lagrange. L’accès à l’évolution instationnaire de l’écoulement permet d’identifier les mêmes mécanismes de dispersion et de mélange dans les deux simulations. Des différences sur la répartition de diamètre moyen et de carburant dans la chambre ont été mis en évidence et reliés à la polydispersion locale qui n’est pas résolue dans l’approche Euler-Euler monodisperse et qui apparaît naturellement dans l’approche Euler-Lagrange malgré l’injection monodisperse. / Aeronautical gas turbines are facing growing demands on emission reductions. Indeed, the quality of the air-fuel mixture directly triggers the formation of pollutants degrading the environment. Large Eddy Simulation is an accurate numerical method to predict turbulent mixing in combustors. Adding the liquid phase of the fuel in these simulations also becomes necessary to properly predict the injection process and the vaporization of the fuel in the combustion chamber. The purpose of this dissertation is to evaluate the accuracy and reliability of Euler-Euler LES in a complex combustor configuration. The injection and vaporization processes of the fuel liquid phase are both modeled in the present LES as they drive the formation of the fuel gas phase. Moreover, the numerical methods that solve the continuous equations of the disperse phase must be accurate and robust in realistic combustor configurations. The simulations shown in the present study reproduce the non-reactive two-phase flow of the ONERA Mercato test bench. The experimental set-up is equipped with an air-swirler injection system and a pressure-swirled atomizer typical of actual turboengine combustors. In the present work the FIM-UR liquid injection model has been developed. It creates boundary conditions profiles for a liquid spray produced by a pressure-swirled atomizer. Kerosene used in the experiments is modeled in the present numerical simulations by a single species leading to a good estimate of the vaporization rate. Three numerical strategies have been tested on the Mercato configuration. Comparisons between experimental and LES results help defining the most accurate numerical strategy. The use of the centered numerical scheme TTGC stabilized by a localized artificial viscosity operator is best when the random uncorrelated energy of droplets is also resolved. Unlike an upwind numerical scheme, the selected strategy allows the user to control where and how much artificial viscosity is added. The source terms coming from the mesoscopic movement redistribute the energy in the compression or expanding zones of the disperse phase, and provide the proper distribution of fluctuations in the combustion chamber. The obtained strategy is compared with the statistics provided by a Lagrangian description of the liquid spray in the same mono-disperse injection. The Euler-Euler approach leads to the same accuracy in the same spray dynamics of the disperse phase as in the Euler-Lagrange method. Both unsteady flow simulations also provide the same dispersion and mixing processes in the Mercato set-up. Differences on the mean diameter and the fuel distribution in the combustion chamber are seen and related to the local poly-dispersion that cannot be resolved in the mono-disperse Euler-Euler approach and that naturally appear in the Euler-Lagrange method despite the mono-disperse injection.
7

Modélisation de nanomatériaux injectés par voie liquide dans un jet de plasma pour la fabrication de nanostructures

Caruyer, Céline 12 October 2011 (has links)
Ce travail porte sur l’étude du procédé de projection plasma par voie liquide et en particulier sur l’interaction entre la phase liquide et l’écoulement de plasma. Différents phénomènes physiques ont lieu comme la fragmentation du jet, l’évaporation du liquide et la fusion des particules. La simulation numérique permet de mieux comprendre les phénomènes physiques et vient en appui des expériences qui sont parfois difficiles voire impossibles à réaliser. Un modèle compressible diphasique est développé afin de prendre en compte les effets compressibles du plasma. Des validations sont réalisées sur des cas test académiques et sur un jet d’argon pur. De bons accords sont obtenus entre les simulations et la théorie ou les expériences. Ensuite différents mélanges de gaz plasmagènes, classiquement utilisés en projection plasma, sont étudiés : l’argon/hydrogène et l’argon/hélium.Une analyse du caractère instationnaire et turbulent est ensuite menée et permet de voir l’importance des effets instationnaires dans ces écoulements. Puis des simulations de l’injection de la phase liquide sous forme de gouttes ou de jet continu dans l’écoulement de plasma sont réalisées. L’influence de la nature des gaz plasmagènes et du mode d’injection est démontrée. Les structures observées expérimentalement sont également obtenues parles simulations. / The study of the plasma spraying process is investigated in this work, in particular the interaction between a liquid phase and a plasma flow. Different physical phenomena occureas the jet fragmentation, the liquid vaporization and the particles fusion. The numerical simulation is used to better understand the physical phenomena and is an alternative to experimental measurements, which could be locally difficult to perform because of the measurement techniques limitations and the particular characteristics of the plasma. A compressible two-phase model is developped to take into account the compressible effects of the plasma flow. Validations are realized on academic test cases and on a argonjet. Good agreements are obtained between simulations and theory or experiments. Then different mixtures of plasmagen gas, classically used in plasma spraying, are studied :argon/hydrogen and argon/helium. An analysis of unsteady and turbulent character isled and allows seeing the importance of unsteady effects in these flows. Numerical simulations of the injection of a liquid phase into the plasma flow are realized. The influence of the plasmagen gas nature and the injection type is anlysed. Structures observed by experiments are also obtained by the simulations.
8

Développement d’une vanne d’injection de liquide pour l’analyse en ligne par chromatographie en phase gazeuse et ses applications dans le domaine du raffinage : étude du comportement et apport des colonnes monolithiques courtes pour la chromatographie en phase gazeuse haute pression / Development of a liquid injection system dedicated to on-line analysis by gas chromatography and its refining applications : study of the behavior and contribution of short monolithic columns in high pressure gas chromatography

Maniquet, Adrien 14 December 2016 (has links)
En milieu industriel, si l'analyse en ligne d'effluents gazeux à l'aide de la chromatographie en phase gazeuse est actuellement réalisée sans difficultés majeure, l'analyse des liquides reste une des principales problématiques à résoudre. En effet, comparée à une analyse réalisée au laboratoire, l'analyse en ligne d'un échantillon liquide permettrait de s'affranchir de l'étape de prélèvement et de préparation avant injection ainsi que des problèmes de contamination et de représentativité de l'échantillon. Des systèmes d'injection de liquide en ligne sont actuellement disponibles, cependant, des difficultés d'injection liées à la discrimination des analytes sont rencontrées. C'est dans ce contexte qu'une vanne dédiée à l'injection des liquides en ligne a été développée, puis validée en laboratoire, et enfin mise en œuvre sur des applications industrielles pétrolières. Un tout autre enjeu, lié entre autres à la réduction des coûts de maintenance et d'installation, ainsi qu'à la compatibilité de systèmes analytiques destinés à l'industrie et aux micro-pilotes, a orienté des développements instrumentaux vers la miniaturisation des systèmes. Un assemblage de différentes briques technologiques a ensuite été réalisé afin d'évaluer la faisabilité d'un système miniaturisé incorporant la technologie d'injection des liquides en ligne. Finalement et toujours dans ce contexte de miniaturisation, des colonnes monolithiques courtes ont été mises en œuvre en chromatographie en phase gazeuse à haute pression, au laboratoire pour commencer, puis sur des effluents industriels gazeux. Elles ont permis de réaliser des analyses très rapides avec une grande efficacité par unité de longueur tout en pouvant agir sur la sélectivité des colonnes grâce à un contrôle de leurs propriétés de surface / In industry, although on-line analysis of gaseous effluents using gas chromatography is carried out without major difficulty, the analysis of liquids remains problematic and is one of the main issues to be solved. Indeed, compared to an analysis carried out in a laboratory, the on-line analysis of a liquid sample would bypass the steps of sampling and preparation prior to injection and would avoid problems of contamination and representativeness of the sample. Systems for injecting liquids on-line are currently available; however, difficulties are encountered, due to the discrimination of analytes. It is in this context that a valve dedicated to the on-line injection of liquids was developed, validated under laboratory conditions and finally implemented in the oil industry. Another issue, related, amongst other things, to the reduction of maintenance and installation costs, as well as to the compatibility of analytical systems for industry and for micro-pilots, steered instrumental developments towards the miniaturization of systems. Different technological bricks were therefore brought together to assess the feasibility of a miniaturized system involving the technology for on-line injection of liquid. Finally, and still in the context of miniaturization, short monolithic columns were implemented in gaseous phase chromatography at high pressure, first in the laboratory and then on industrial gas effluents. They allowed very fast analyses to be performed which had greater efficiency per unit of length while still being able to act on the selectivity of the columns thanks to the control of their surface properties
9

Revêtements barrière d'alumine amorphe appliqués à l’intérieur de flacons pharmaceutiques en verre, par le procédé de dépôt chimique en phase vapeur. / Amorphous alumina barrier coatings applied by chemical vapor deposition on the inner surface of pharmaceutical glass bottles.

Etchepare, Pierre-Luc 23 July 2015 (has links)
Les matériaux utilisés dans le domaine de l’emballage sont parfois revêtus d’une couche barrière afin de réduire les interactions entre le contenant et son contenu. Sur les flacons en verre, le dépôt de ces couches permet de limiter la dégradation de leur surface interne, de réduire le lessivage des cations du verre et d’améliorer la stabilité des propriétés du produit au contact. Dans ce contexte, un procédé de dépôt chimique en phase vapeur (CVD) à partir de tri-isopropoxyde d’aluminium (TIA) par injection liquide directe est mis en œuvre pour appliquer des revêtements d’alumine amorphe sur les parois internes de flacons en verre. Etant donné le nombre important de paramètres expérimentaux et la complexité de la géométrie à revêtir (une cavité avec un seul orifice étroit), le procédé de dépôt est modélisé avec le code de Mécanique des Fluides Numériques Fluent. Le modèle représente les profils locaux de vitesse d’écoulement, de température et de concentration des espèces gazeuses dans l’enceinte réactionnelle, ainsi que les vitesses locales de croissance, s’appuyant sur une loi cinétique hétérogène apparente de décomposition du TIA en alumine. Il permet une meilleure compréhension des phénomènes physico-chimiques se produisant à l’intérieur du corps creux et conduit ainsi à l’amélioration de la configuration du réacteur pour obtenir une couche mince transparente et d’épaisseur relativement uniforme. Le modèle est ensuite utilisé comme guide dans le choix des conditions opératoires pour revêtir la surface interne du flacon à pressions élevées, se rapprochant des conditions de fonctionnement à pression atmosphérique sur les lignes de production industrielle. Une interaction entre expériences et simulations est nécessaire pour adapter la configuration du réacteur aux dépôts à hautes pressions. Des films submicroniques sont déposés à différentes pressions de 666 Pa àt 97,3 kPa, pour un profil prédéterminé de températures le long des parois du flacon comprises entre 480 et 650 °C. Les films obtenus sont amorphes, stœchiométriques, sans traces de carbone et présentent une microstructure dense et légèrement rugueuse. Les flacons revêtus sont soumis à un essai de vieillissement hydrothermal lors d’un cycle de stérilisation pendant une heure à 121 °C et 200 kPa en contact avec de l’eau ultra-pure. La résistance hydrolytique, qui correspond à la résistance du verre à la cession de substances minérales solubles au contact de l’eau est évaluée pour des revêtements de différentes épaisseurs comprises entre 45 et 650 nm en moyenne. Les mécanismes de diffusion et d’extraction des cations sont analysés par spectroscopie de photoélectrons induits par rayons X et spectrométrie par torche plasma. Les effets du vieillissement sur l’adhérence, la nature et la microstructure en surface de la couche d’alumine amorphe sont étudiés. Une synthèse évaluant entre autre la robustesse du procédé, les vitesses de dépôt, les performances barrières et la résistance au vieillissement hydrothermal des couches minces d’alumine, en vis-à-vis des solutions de traitements de surface sur flacon déjà existantes, permet de conclure sur la maturité industrielle et la valeur ajoutée de ce procédé. / Materials for packaging applications are sometimes coated with a barrier film in order to decrease the interactions between the content and the container. Deposition of such coatings on glass bottles allows limiting the deterioration of the internal surface, decreasing the leaching of cations from the glass and improving the stability of the properties of the liquid content. In this context, a chemical vapor deposition (CVD) process has been designed for the deposition of amorphous alumina thin films on the inner walls of a glass container. The process involves aluminum tri-isopropoxide (ATI), which is fed to the deposition volume by a direct liquid injection (DLI) technology. Given the number of experimental parameters and the complexity of the substrate (a hollow body with a unique narrow entrance), a model of the process has been developed with the Computational Fluid Dynamics code Fluent. The model displays the local profiles of mass flow, temperature and gas species concentrations in the reactor, and the local growth rates based on the kinetic law of the apparent heterogeneous reaction of ATI decomposition to alumina. A good agreement has been found between the experimental and the calculated growth rates. The model allowed gaining a better insight into the physic-chemical phenomena occurring inside the hollow body and thus improving the reactor configuration to obtain transparent and relatively uniform thin films. Following, the model was used as a guide for the choice of the operating conditions of the depositions at higher pressure. An interplay between experimental and simulated results was used to adapt the reactor configuration for depositions at atmospheric pressure. Submicronic films were performed for several pressures between 666 Pa and 97.3 kPa, for thermal profiles along the bottle walls ranging from 753K to 923K. The deposited films are amorphous, stoichiometric without carbon residues, dense and slightly rough. The coated bottles underwent a test of hydrothermal ageing with a cycle of sterilization filled with ultra-pure water during one hour at 121°C and 200 kPa. The hydrolytic resistance, which is the resistance of the glass to the release of soluble mineral substances into water, is measured for films with several thicknesses ranging from 45 to 650 nm on average. The mechanisms of diffusion and extraction for the alkali ions have been analyzed by X-ray photoelectron spectroscopy and inductively coupled plasma spectrometry. The impacts of ageing on the adhesion, the nature and the surface microstructure of the amorphous alumina films have been studied. The robustness of the process, the growth rate, barrier performances and resistance to the hydrothermal ageing of thin films, and the comparison of the above with the scarce existing solutions of surface treatments on glass bottles, allows concluding on the industrial viability and the added value of the process.
10

Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines / Prédiction des flux thermiques dans les moteurs fusée

Potier, Luc 24 May 2018 (has links)
La combustion cryogénique dans les moteurs de fusée dits à propulsion liquide utilise généralement un couple d'ergols, le plus couramment composé d'hydrogène/oxygène (H2/O2). Privilégiée pour le fort pouvoir calorifique du dihydrogène, cette combustion à haute pression, induit des températures de fonctionnement très élevées et nécessite l'intégration d'un système de refroidissement. La prédiction des flux thermiques aux parois est donc un élément essentiel de la conception d'une chambre de combustion de moteur fusée. Ces flux sont le résultat d'écoulements fortement turbulents, compressibles, avec une cinétique chimique violente induisant de forts gradients d'espèces et de température. La simulation de ces phénomènes nécessite des approches spécifiques telles que la Simulation aux Grandes Echelles (SGE) qui réalise un très bon compromis entre précision et coût de calcul. Cette thèse a ainsi pour objectif la simulation par SGE des transferts de chaleur aux parois dans les chambres de combustion de moteurs fusée opérant en régime sous-critique. Le régime sous-critique implique un état liquide pour un des ergols, dont il faut traiter l'injection et l'atomisation. Dans un premier temps ce travail s'intéresse à plusieurs éléments de modélisation nécessaire pour réaliser les simulations visées. Le comportement des flammes H2/O2 est décrit par un schéma cinétique réduit et validé sur des configurations académiques. La prédictivité de ce schéma est évaluée sur une large gamme de fonctionnement dans des conditions représentatives des moteurs fusée. La simulation de l'injection de l'oxygène liquide (LOx) est un autre point critique qui nécessite de décrire l'atomisation et la phase dispersée ainsi que son couplage avec la phase gazeuse. La déstabilisation et l'atomisation primaire du jet liquide, trop complexe à simuler en SGE 3D, sont omises ici pour injecter directement un spray paramétré grâce à des corrélations empiriques. Enfin, la prédiction des flux thermiques utilise un modèle de loi de paroi spécifiquement dédiée aux écoulements à fort gradient de température. Cette loi de paroi est validée sur des configurations de canaux turbulents par comparaison avec des simulations avec résolution directe de la couche limite. La méthodologie basée sur les modèles développés est ensuite employée pour la simulation d'une chambre de combustion représentative du fonctionnement des moteurs cryogéniques. Il s'agit de la configuration CONFORTH testée sur le banc MASCOTTE (ONERA) et pour laquelle des mesures de température de paroi et de flux thermiques sont disponibles. Les résultats des SGE montrent un bon accord avec l'expérience et démontrent la capacité de la SGE à prédire les flux thermiques dans une chambre de combustion de moteur fusée. Enfin, dans un dernier chapitre ce travail s'intéresse à une méthode d'augmentation des transferts thermiques via une expérience de JAXA utilisant des parois rainurées dans la direction axiale. Par comparaison avec une chambre à parois lisses, les résultats démontrent la bonne prédiction par la SGE de l'augmentation du flux de chaleur grâce aux rainures et confirment la validité de la méthode développée pour des géométries de paroi complexes. / Combustion in cryogenic engines is a complex phenomenon, involving either liquid or supercritical fluids at high pressure, strong and fast oxidation chemistry, and high turbulence intensity. Due to extreme operating conditions, a particularly critical issue in rocket engine is wall heat transfer which requires efficient cooling of the combustor walls. The concern goes beyond material resistance: heat fluxes extracted through the chamber walls may be reused to reduce ergol mass or increase the power of the engine. In expander-type engine cycle, this is even more important since the heat extracted by the cooling system is used to drive the turbo-pumps that feed the chamber in fuel and oxidizer. The design of rocket combustors requires therefore an accurate prediction of wall heat flux. To understand and control the physics at play in such combustor, the Large Eddy Simulation (LES) approach is an efficient and reliable numerical tool. In this thesis work, the objective is to predict wall fluxes in a subcritical rocket engine configuration by means of LES. In such condition, ergols may be in their liquid state and it is necessary to model liquid jet atomization, dispersion and evaporation.The physics that have to be treated in such engine are: highly turbulent reactive flow, liquid jet atomization, fast and strong kinetic chemistry and finally important wall heat fluxes. This work first focuses on several modeling aspects that are needed to perform the target simulations. H2/O2 flames are driven by a very fast chemistry, modeled with a reduced mechanism validated on academic configurations for a large range of operating conditions in laminar pre- mixed and non-premixed flames. To form the spray issued from the atomization of liquid oxygen (LOx) an injection model is proposed based on empirical correlations. Finally, a wall law is employed to recover the wall fluxes without resolving directly the boundary layer. It has been specifically developed for important temperature gradients at the wall and validated on turbulent channel configurations by comparison with wall resolved LES. The above models are then applied first to the simulation of the CONFORTH sub-scale thrust chamber. This configuration studied on the MASCOTTE test facility (ONERA) has been measured in terms of wall temperature and heat flux. The LES shows a good agreement compared to experiment, which demonstrates the capability of LES to predict heat fluxes in rocket combustion chambers. Finally, the JAXA experiment conducted at JAXA/Kakuda space center to observe heat transfer enhancement brought by longitudinal ribs along the chamber inner walls is also simulated with the same methodology. Temperature and wall fluxes measured with smooth walls and ribbed walls are well recovered by LES. This confirms that the LES methodology proposed in this work is able to handle wall fluxes in complex geometries for rocket operating conditions.

Page generated in 0.5181 seconds