Les travaux de recherche présentés dans ce document s'inscrivent dans le cadre de la gestion des connaissances appliquée à la déconstruction des avions en fin de vie avec pour objectif l'aide à la décision par l'évaluation des risques. Pour répondre à cet objectif, nous avons développé des mécanismes d'aide à la décision hybridant les retours d'expérience statistique et cognitif pour évaluer les risques sur les zones critiques d'un système. L'approche proposée permet la combinaison des avis d'experts du domaine avec des statistiques issues d'une base de données en utilisant les fonctions de croyance. L'évaluation des risques est réalisée par le traitement des connaissances combinées au moyen d'un modèle utilisant les réseaux évidentiels dirigés. Ce document s'articule en quatre chapitres.Le premier chapitre constitue un état de l'art abordant les notions liées au risque et au retour d'expérience. Il permet de définir les concepts clés concernant l'évaluation du risque, la gestion des connaissances (et en particulier le processus de retour d'expérience) ainsi que les passerelles entre ces deux concepts. Le second chapitre permet d'introduire un modèle d'évaluation des risques basé sur les méthodes bayésiennes. Cependant, les méthodes bayésiennes ont des limites, en particulier pour ce qui concerne la modélisation de l'incertitude épistémique inhérente aux avis d'experts, qui nous ont incité à proposer des alternatives, telles les fonctions de croyance et les réseaux évidentiels dirigés que nous avons finalement choisi d'utiliser. Le troisième chapitre propose une démarche permettant d'évaluer les risques en utilisant les réseaux évidentiels dirigés. L'approche proposée décrit les mécanismes utilisés pour formaliser et fusionner les connaissances expertes et statistiques, puis pour traiter ces connaissances au moyen des réseaux évidentiels dirigés. Pour finir, des indicateurs permettant la restitution des résultats au décideur sont introduits. Le dernier chapitre présente le projet DIAGNOSTAT qui a servi de cadre à ces travaux de recherche et expose un cas d'étude permettant d'appliquer la démarche introduite précédemment à la déconstruction des avions en fin de vie au moyen de deux scénarios / The research work presented in this document relates to knowledge management applied to aircraft deconstruction. The aim of this work is to provide a decision support system for risk assessment. To meet this objective, mechanisms for decision support hybridizing cognitive and statistical experience feedback to perform risk assessment on system critical areas have been developed. The proposed approach allows to combine expert opinion with statistics extracted from a database by using belief functions. The risk assessment is performed by the combined knowledge processing using a model based on directed evidential networks. This document is divided into four chapters. The first chapter is a state of the art addressing concepts related to risk and experience feedback. It defines key concepts for risk assessment, knowledge management (in particular the experience feedback process) and the links between these two concepts. The second chapter allows to introduce a risk assessment model based on Bayesian methods. However, Bayesian methods have some limitations, particularly with respect to epistemic uncertainty modelling. That is why, some alternatives have been proposed, such as belief functions and directed evidential networks that we finally chose to use. The third chapter proposes an approach for assessing the risk using directed evidential networks. The proposed approach describes the mechanisms used to formalize and combine expert and statistical knowledge, and then to process this knowledge with directed evidential networks. Finally, indicators to inform the decision maker about results are introduced. The last chapter presents the DIAGNOSTAT project which provided the framework for this research and a study case to apply the approach introduced earlier for aircraft deconstruction by using two scenarios
Identifer | oai:union.ndltd.org:theses.fr/2012INPT0032 |
Date | 31 May 2012 |
Creators | Villeneuve, Eric |
Contributors | Toulouse, INPT, Pérès, François, Geneste, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds