• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle d'accès personnalisé à l'information basé sur les Diagrammes d'Influence intégrant un profil utilisateur évolutif

Zemirli, Nesrine 12 June 2008 (has links) (PDF)
La RI personnalisée est une direction de recherche qui permet la mise en oeuvre de systèmes d'accès à l'information centrés utilisateurs, non dans le sens d'un utilisateur générique mais d'un utilisateur spécifique et ce, en vue d'adapter son fonctionnement à son contexte précis. L'objet de cette thèse est de proposer un modèle formel capable d'intégrer l'utilisateur dans le processus d'accès à l'information. Nous avons orienté nos travaux vers l'utilisation des diagrammes d'influence comme support théorique nous permettant de formaliser l'utilité des décisions associées à la pertinence des documents compte tenu de la requête et du pro- fil de l'utilisateur. L'idée de base est de substituer à la fonction de pertinence classique qui mesure le degré d'appariement requête-document une fonction intégrant l'utilisateur. Dans notre approche, le profil utilisateur comprend ses centres d'intérêt à court terme et long terme. Le profil repose sur une représentation à deux dimensions corrélées : historique des interactions et centres d'intérêts. Le processus de définition du profil est fondé sur l'interaction des phases de construction et d'évolution. Plus précisément, le profil est construit et évolue à partir des informations collectées sur les documents jugés implicitement ou explicitement pertinents lors des interactions de l'utilisateur avec un SRI. Nous utilisons pour cela un opérateur d'agrégation d'informations ainsi qu'une méthode statistique qui permet de scruter le changement dans les centres d'intérêt de l'utilisateur, au cours du temps. N'ayant pas de cadre standard d'évaluation, nous proposons un cadre d'évaluation adapté à l'accès personnalisé à l'information en augmentant les collections de la campagne TREC par des profils utilisateurs simulés. Nous validons notre contribution par comparaison au modèle de recherche Bayésien classique.
2

Hybridation des retours d'expérience statistique et cognitif pour l'évaluation des risques : application à la déconstruction des aéronefs / Hybridization of statistical and cognitive experience feedback to assess risk : application to aircraft deconstruction

Villeneuve, Eric 31 May 2012 (has links)
Les travaux de recherche présentés dans ce document s'inscrivent dans le cadre de la gestion des connaissances appliquée à la déconstruction des avions en fin de vie avec pour objectif l'aide à la décision par l'évaluation des risques. Pour répondre à cet objectif, nous avons développé des mécanismes d'aide à la décision hybridant les retours d'expérience statistique et cognitif pour évaluer les risques sur les zones critiques d'un système. L'approche proposée permet la combinaison des avis d'experts du domaine avec des statistiques issues d'une base de données en utilisant les fonctions de croyance. L'évaluation des risques est réalisée par le traitement des connaissances combinées au moyen d'un modèle utilisant les réseaux évidentiels dirigés. Ce document s'articule en quatre chapitres.Le premier chapitre constitue un état de l'art abordant les notions liées au risque et au retour d'expérience. Il permet de définir les concepts clés concernant l'évaluation du risque, la gestion des connaissances (et en particulier le processus de retour d'expérience) ainsi que les passerelles entre ces deux concepts. Le second chapitre permet d'introduire un modèle d'évaluation des risques basé sur les méthodes bayésiennes. Cependant, les méthodes bayésiennes ont des limites, en particulier pour ce qui concerne la modélisation de l'incertitude épistémique inhérente aux avis d'experts, qui nous ont incité à proposer des alternatives, telles les fonctions de croyance et les réseaux évidentiels dirigés que nous avons finalement choisi d'utiliser. Le troisième chapitre propose une démarche permettant d'évaluer les risques en utilisant les réseaux évidentiels dirigés. L'approche proposée décrit les mécanismes utilisés pour formaliser et fusionner les connaissances expertes et statistiques, puis pour traiter ces connaissances au moyen des réseaux évidentiels dirigés. Pour finir, des indicateurs permettant la restitution des résultats au décideur sont introduits. Le dernier chapitre présente le projet DIAGNOSTAT qui a servi de cadre à ces travaux de recherche et expose un cas d'étude permettant d'appliquer la démarche introduite précédemment à la déconstruction des avions en fin de vie au moyen de deux scénarios / The research work presented in this document relates to knowledge management applied to aircraft deconstruction. The aim of this work is to provide a decision support system for risk assessment. To meet this objective, mechanisms for decision support hybridizing cognitive and statistical experience feedback to perform risk assessment on system critical areas have been developed. The proposed approach allows to combine expert opinion with statistics extracted from a database by using belief functions. The risk assessment is performed by the combined knowledge processing using a model based on directed evidential networks. This document is divided into four chapters. The first chapter is a state of the art addressing concepts related to risk and experience feedback. It defines key concepts for risk assessment, knowledge management (in particular the experience feedback process) and the links between these two concepts. The second chapter allows to introduce a risk assessment model based on Bayesian methods. However, Bayesian methods have some limitations, particularly with respect to epistemic uncertainty modelling. That is why, some alternatives have been proposed, such as belief functions and directed evidential networks that we finally chose to use. The third chapter proposes an approach for assessing the risk using directed evidential networks. The proposed approach describes the mechanisms used to formalize and combine expert and statistical knowledge, and then to process this knowledge with directed evidential networks. Finally, indicators to inform the decision maker about results are introduced. The last chapter presents the DIAGNOSTAT project which provided the framework for this research and a study case to apply the approach introduced earlier for aircraft deconstruction by using two scenarios
3

Autour de la décision qualitative en théorie des possibilités / On the qualitative decision in a possibility theory framework

Sid-Amar, Ismahane 20 September 2015 (has links)
Dans de nombreuses applications réelles, nous sommes souvent confrontés à des problèmes de décision: de choisir des actions et de renoncer à d'autres. Les problèmes de décision deviennent complexes lorsque les connaissances disponibles sont entachées d'incertitude ou lorsque le choix établi présente un risque.L'un des principaux domaines de l'Intelligence Artificielle (IA) consiste à représenter les connaissances, à les modéliser et à raisonner sur celles-ci. Dans cette thèse, nous sommes intéressés à une discipline inhérente à l'IA portant sur les problèmes de décision. La théorie de la décision possibiliste qualitative a élaboré plusieurs critères, selon le comportement de l'agent, permettant de l'aider à faire le bon choix tout en maximisant l'un de ces critères. Dans ce contexte, la théorie des possibilités offre d'une part un cadre simple et naturel pour représenter l'incertitude et d'autre part, elle permet d'exprimer les connaissances d'une manière compacte à base de modèles logiques ou de modèles graphiques. Nous proposons dans cette thèse d'étudier la représentation et la résolution des problèmes de la décision qualitative en utilisant la théorie des possibilités. Des contreparties possibilistes des approches standards ont été proposées et chaque approche a pour objectif d'améliorer le temps de calcul des décisions optimales et d'apporter plus d'expressivité à la forme de représentation du problème. Dans le cadre logique, nous avons proposé une nouvelle méthode, pour résoudre un problème de la décision qualitative modélisé par des bases logiques possibilistes, basée sur la fusion syntaxique possibiliste. Par la suite, dans le cadre graphique, nous avons proposé un nouveau modèle graphique, basé sur les réseaux possibilistes, permettant la représentation des problèmes de décision sous incertitude. En effet, lorsque les connaissances et les préférences de l'agent sont exprimées de façon qualitative, nous avons proposé de les représenter par deux réseaux possibilistes qualitatifs distincts. Nous avons développé un algorithme pour le calcul des décisions optimales optimistes qui utilise la fusion de deux réseaux possibilistes. Nous avons montré aussi comment une approche basée sur les diagrammes d'influence peut être codée d'une manière équivalente dans notre nouveau modèle. Nous avons en particulier proposé un algorithme polynomial qui permet de décomposer le diagramme d'influence en deux réseaux possibilistes. Dans la dernière partie de la thèse, nous avons défini le concept de la négation d'un réseau possibiliste qui pourra servir au calcul des décisions optimales pessimistes. / In many applications, we are often in presence of decision making problems where the choice of appropriate actions need to be done. When the choice is clear and the risks are null, the decision becomes easy to select right actions. Decisions are more complex when available knowledge is flawed by uncertainty or when the established choice presents a risk. One of the main areas of Artificial Intelligence (AI) is to model, represent and reason about knowledge. In this thesis, we are interested in an inherent discipline in AI which concerns decision making problems.The qualitative possibility decision theory has developed several criteria, depending on the agent behavior, for helping him to make the right choice while maximizing one of these criteria. In this context, possibility theory provides a simple and natural way to encode uncertainty. It allows to express knowledge in a compact way using logical and graphical models. We propose in this thesis to study the representation and resolution of possibilistic qualitative decision problems. Possibilistic counterparts of standard approaches have been proposed and each approach aims to improve the computational complexity of computing optimal decisions and to provide more expressiveness to the representation model of the problem. In the logical framework, we proposed a new method for solving a qualitative decision problem, encoded by possibilistic bases, based on syntactic representations of data fusion problems. Subsequently, in a graphical framework, we proposed a new graphical model for decision making under uncertainty based on qualitatif possibilistic networks. Indeed, when agent's knowledge and preferences are expressed in a qualitative way, we suggest to encode them by two distinct qualitative possibilistic networks. We developed an efficient algorithm for computing optimistic optimal decisions based on syntactic counterparts of the possibilistic networks fusion. We also showed how an influence diagram can be equivalently represented in our new model. In particular, we proposed a polynomial algorithm for equivalently decomposing a given possibilistic influence diagram into two qualitatif possibilistic networks. In the last part of the thesis, we defined the concept of negated possibilistic network that can be used for computing optimal pessimistic decisions.

Page generated in 0.0484 seconds