Return to search

Studium metabolismu bakteriálních buněk a vlivu stresu na biosyntézu PHA / Metabolism of Bacterial Cells and the Effect of Stress on Biosynthesis of PHA

This thesis deals with the study of polyhydroxyalkanoate biosynthesis as a microbial product with the potential to replace current conventional plastics made from petroleum. The dissertation thesis is elaborated in the form of a discussed set of already published publications, which are then part of the thesis in the form of appendices. The work builds on relatively extensive knowledge in the field of polyhydroxyalkanoate production and brings new facts and possible strategies. Various possibilities of analysis of polyhydroxyalkanoates using modern methods were tested in this work, which brings especially speed, which can be crucial in real-time evaluation of production biotechnological process. Raman spectroscopy has proven to be a very promising technique for rapid quantification of PHA. Furthermore, the work deals with valorisation of waste of food and agricultural origin. Emphasis is placed on methods of detoxification of lignocellulose hydrolysates. In this context, adsorption of inhibitors to lignin was first used as an alternative to other detoxification techniques. Due to detoxification, selected production strains Burkholederia cepacia and B. sacchari were able to utilize softwood hydrolyzate for PHA production. In the next part of the work was also tested the possibility of using chicken feathers as a complex source of nitrogen. Evolutionary engineering was also used as a possible strategy to eliminate the inhibitory effect of levulic acid as a microbial inhibitor that results from the hydrolysis of lignocellulosic materials. Adaptation experiments were used to develop strains exhibiting higher resistance to levulic acid and the ability to accumulate a higher 3HV copolymer from the original wild-type C. necator strain. Another promising approach tested in the work was the use of extremophilic microbial strain, which leads to a reduction in the cost of biotechnological production. Selected Halomonas species have shown high potential as halophilic PHA producers. The final part of the thesis was devoted to the selection of the production strain with regard to the properties of the resulting PHA. The Cupriavidus malaysiensis strain was selected to produce a P(3HB-co-3HV-co-4HB) terpolymer which revealed significant differences in material properties over P3HB.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:408063
Date January 2019
CreatorsKučera, Dan
ContributorsKráčmar, Stanislav, Ondrejovič,, Miroslav, Obruča, Stanislav
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.004 seconds