• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engenharia metabólica de Saccharomyces cerevisiae para o aumento do rendimento energético do metabolismo da sacarose. / Metabolic engineering of Saccharomyces cerevisiae aimed at improving the energetic yield of sucrose metabolism.

Marques, Wesley Leoricy 12 February 2014 (has links)
A indústria biotecnológica vem ganhando destaque em função das negativas atreladas ao uso de recursos fósseis. Nesse cenário, o Brasil se destaca por seu programa de produção de bioetanol bem estabelecido e pelo uso de cana-de-açúcar como matéria prima barata. O presente trabalho construiu Saccharomyces cerevisiae transgênicas para aprodução de compostos de interesse econômico cuja biossíntese consome energia livre (ATP). Para tanto, a expressão de proteínas heterólogas e engenharia evolutiva foram realizadas em levedura de modo que a produção de determinados compostos se torne energicamente viável. / The biotechs industry is a growing field since fossil resources are being attached to ecological and geopolitical constraints. In this scenario, Brazil has a major role due to its large experience in the bioethanol industry and sugarcane use as a cheap feedstock. The aim of this work is to optimize Saccharomyces cerevisiae allowing them to occupy a new niche: the production of economically valuable chemicals that require cellular free energy (ATP) on their biosynthesis. In this context, heterologous protein expression and evolutionary engineering were done. Therefore, this work will potentially contribute to make certain energy demanding chemicals production economically viable.
2

Résistance au stress lors de la phase de latence en fermentation œnologique et développement de levures optimisées / Stress resistance during the lag phase of wine fermentation and development of optimized yeasts

Ferreira, David 18 December 2017 (has links)
Résumé : Saccharomyces cerevisiae, utilisée depuis des millénaires pour la fermentation du vin du fait de son endurance et de ses qualités inégalables, est de nos jours largement utilisée pour inoculer les mouts de raisin. Néanmoins, lors de l'inoculation, les souches oenologiques doivent faire face à des stress spécifiques qui peuvent compromettre le début de la fermentation. L’objectif de ce travail est d'élucider les bases métaboliques et moléculaires de la résistance multi-stress pendant la phase de latence en conditions oenologiques. Nous avons tout d'abord caractérisé un ensemble de levures oenologiques en mettant l'accent sur des facteurs de stress caractéristiques des vins rouges et des vins blancs. La température et le stress osmotique affectent fortement cette phase pour toutes les souches, alors que le SO2, les lipides et la thiamine ont un effet souche-dépendant. Ces données ont servi de base à deux approches parallèles. Une approche d'évolution expérimentale a permis, en appliquant des pressions sélectives caractéristiques de la phase de latence, de sélectionner des souches évoluées présentant une phase de latence plus courte. Plusieurs mutations de novo potentiellement impliquées dans le phénotype évolué ont été identifiées par séquençage de leur génome. En parallèle, une approche QTL combinant des croisements inter-souches, une étape de propagation industrielle et séchage des descendants, et la sélection de cellules bourgeonnantes par FACS a été développée. Ces deux stratégies ont permis d’identifier plusieurs variants alléliques impliqués dans la paroi cellulaire, le transport du glucose, le cycle cellulaire et la résistance au stress, jouant un rôle potentiellement important pendant la phase de latence. L’ensemble de ces résultats apporte de nouvelles connaissances sur la diversité et les bases génétiques de l'adaptation des levures à la phase de latence oenologique et offre un cadre d’amélioration des propriétés des souches. De plus, nous avons montré que K. marxianus a un potentiel pour des cultures mixtes et des contributions aromatiques positives en conditions oenologiques, ouvrant de nouvelles possibilités pour des études ultérieures.Titre : Résistance au stress lors de la phase de latence en fermentation oenologique et développement de levures optimiséesMots clés : Fermentation oenologique, levure, phase de latence, résistance multi-stress, QTL, évolution adaptative, K. marxianus / Abstract: Saccharomyces cerevisiae has been used for millennia to perform wine fermentation due to its endurance and unmatched qualities and is nowadays widely used as wine yeast starter. Nevertheless, at the moment of inoculation, wine yeasts must cope with specific stress factors that can compromise the fermentation start. The objective of this work was to elucidate the metabolic and molecular bases of multi-stress resistance during wine fermentation lag phase. We first characterized a set of commercialized wine yeast strains by focusing on stress factors typically found at this stage in red wines and in white wines. Temperature and osmotic stress had a drastic impact in lag phase for all strains whereas SO2, low lipids and thiamine had a more strain dependent effect. Based on these data, we developed two parallel approaches. Using an evolutionary engineering approach where selective pressures typically present in lag phase were applied, we obtained evolved strains with a shorter lag phase in winemaking conditions. Whole genome sequencing allowed to identify several de novo mutations potentially involved in the evolved phenotype. In parallel, a QTL mapping approach was conducted, combining an intercross strategy, industrial propagation and drying of the progeny populations and selection of the first budding cells by FACS. Both strategies allowed the identification of several allelic variants involved in cell wall, glucose transport, cell cycle and stress resistance, as important in lag phase phenotype. Overall, these results provide a deeper knowledge of the diversity and the genetic bases of yeast adaptation to wine fermentation lag phase and a framework for improving yeast lag phase. Additionally, we showed that K. marxianus has potential for mixed cultures and positive aromatic contributions under oenological conditions, opening new possibilities for further studies.Title: Stress resistance during the lag phase of wine fermentation and development of optimized yeastsKeywords: Wine fermentation, yeast, lag phase, multi-stress resistance, QTL, adaptive evolution, K. marxianus
3

Engenharia metabólica de Saccharomyces cerevisiae para o aumento do rendimento energético do metabolismo da sacarose. / Metabolic engineering of Saccharomyces cerevisiae aimed at improving the energetic yield of sucrose metabolism.

Wesley Leoricy Marques 12 February 2014 (has links)
A indústria biotecnológica vem ganhando destaque em função das negativas atreladas ao uso de recursos fósseis. Nesse cenário, o Brasil se destaca por seu programa de produção de bioetanol bem estabelecido e pelo uso de cana-de-açúcar como matéria prima barata. O presente trabalho construiu Saccharomyces cerevisiae transgênicas para aprodução de compostos de interesse econômico cuja biossíntese consome energia livre (ATP). Para tanto, a expressão de proteínas heterólogas e engenharia evolutiva foram realizadas em levedura de modo que a produção de determinados compostos se torne energicamente viável. / The biotechs industry is a growing field since fossil resources are being attached to ecological and geopolitical constraints. In this scenario, Brazil has a major role due to its large experience in the bioethanol industry and sugarcane use as a cheap feedstock. The aim of this work is to optimize Saccharomyces cerevisiae allowing them to occupy a new niche: the production of economically valuable chemicals that require cellular free energy (ATP) on their biosynthesis. In this context, heterologous protein expression and evolutionary engineering were done. Therefore, this work will potentially contribute to make certain energy demanding chemicals production economically viable.
4

Evoluční inženýrství cyanobakterií v kontextu akumulace PHA / Evolutionary engineering of cyanobacteria with respect to PHA accumulation

Vašířová, Kristýna January 2021 (has links)
The aim of this diploma thesis was to subject selected cyanobacterial strains to adaptive evolution and subsequently investigate the properties of the resulting adapted strains, especially their changes related to polyhydroxyalkanoates (PHA) accumulation. The theoretical part of the work describes in more detail the issue of cyanobacteria, PHA and their interconnection in the field of evolutionary engineering. Cyanobacterial strains Synechocystis sp 6803 and. Synechocystis salina CCALA 192 were used for evolutionary experiments. Selection pressures of hydrogen peroxide and copper. were applied to selected representatives. The resulting cultures and their ability to accumulate PHA were subsequently assessed by gas chromatography. Both of these selection pressures proved to be unsuitable, as strong growth inhibition was observed after their application to cultures, which did not allow the application of evolutionary engineering methods. In the second half of the experimental part, the provided adapted strains to 6% NaCl were monitored. Adaptation has been shown to have a positive effect on microorganisms, as they have a higher biomass content, better stress resistance and a slight increase in PHA accumulation.
5

Evoluční inženýrství bakterií produkujících polyhydroxyalkanoáty / Evolutionary engineering of polyhydroxyalkanoates producing bacteria

Nováčková, Ivana January 2018 (has links)
This diploma thesis deals with the application of evolutionary engineering to PHA producing bacterial strains. The aim of the thesis is to prepare strains adapted to levulinic acid, a selected stress factor, by methods of evolutionary engineering, and then to characterize these strains. The theoretical part deals with evolutionary engineering and polyhydroxyalkanoates predominantly. The bacterial strain Cupriavidus necator H16 was used for evolutionary experiments. Levulinic acid and levulinic acid in the presence of the MMS mutagen were applied to prepare adapted strains. Selection of mutants was evaluated on the basis of growth potential and PHA content in biomass. Polymers produced by five obtained PHA-producing mutants and control were characterized using GC-FID, SEC-MALS, DSC and FT-IR. It was found that a higher content of 3HV in the copolymer led to a lower crystallinity and hence to a lower melting point, nevertheless, only the copolymer of the M0151 strain did not fit this trend. In addition to the characteristics of the polymers, the strains themselves were evaluated from the biochemical point of view by determining the activities of selected enzymes of the citrate, glyoxalate and 2-methylcitrate cycle, selected enzymes generating NADPH, levulic acid catabolism enzyme and PHA biosynthesis enzymes. On the basis of the obtained data, the possible adaptation strategies were discussed, when the E0575 strain was most differentiated from original culture. Values of specific enzyme activities were subjected to AHC and PCA statistical analysis methods.
6

Studium metabolismu bakteriálních buněk a vlivu stresu na biosyntézu PHA / Metabolism of Bacterial Cells and the Effect of Stress on Biosynthesis of PHA

Kučera, Dan January 2019 (has links)
This thesis deals with the study of polyhydroxyalkanoate biosynthesis as a microbial product with the potential to replace current conventional plastics made from petroleum. The dissertation thesis is elaborated in the form of a discussed set of already published publications, which are then part of the thesis in the form of appendices. The work builds on relatively extensive knowledge in the field of polyhydroxyalkanoate production and brings new facts and possible strategies. Various possibilities of analysis of polyhydroxyalkanoates using modern methods were tested in this work, which brings especially speed, which can be crucial in real-time evaluation of production biotechnological process. Raman spectroscopy has proven to be a very promising technique for rapid quantification of PHA. Furthermore, the work deals with valorisation of waste of food and agricultural origin. Emphasis is placed on methods of detoxification of lignocellulose hydrolysates. In this context, adsorption of inhibitors to lignin was first used as an alternative to other detoxification techniques. Due to detoxification, selected production strains Burkholederia cepacia and B. sacchari were able to utilize softwood hydrolyzate for PHA production. In the next part of the work was also tested the possibility of using chicken feathers as a complex source of nitrogen. Evolutionary engineering was also used as a possible strategy to eliminate the inhibitory effect of levulic acid as a microbial inhibitor that results from the hydrolysis of lignocellulosic materials. Adaptation experiments were used to develop strains exhibiting higher resistance to levulic acid and the ability to accumulate a higher 3HV copolymer from the original wild-type C. necator strain. Another promising approach tested in the work was the use of extremophilic microbial strain, which leads to a reduction in the cost of biotechnological production. Selected Halomonas species have shown high potential as halophilic PHA producers. The final part of the thesis was devoted to the selection of the production strain with regard to the properties of the resulting PHA. The Cupriavidus malaysiensis strain was selected to produce a P(3HB-co-3HV-co-4HB) terpolymer which revealed significant differences in material properties over P3HB.
7

Evaluation of evolutionary engineering strategies for the generation of novel wine yeast strains with improved metabolic characteristics

Horsch, Heidi K. 12 1900 (has links)
Thesis (PhD (Viticulture and Oenology. Wine Biotechnology))--Stellenbosch University, 2008. / The occurrence of sluggish and stuck fermentations continues to be a serious problem in the global wine industry, leading to loss of product, low quality wines, cellar management problems and consequently to significant financial losses. Comprehensive research has shown that many different factors can act either in isolation, or more commonly synergistically, to negatively affect fermentative activity of wine yeast strains of the species Saccharomyces cerevisiae. The individual factors most commonly referred to in the literature are various nutrient and oxygen limitations. However, other factors have been shown to contribute to the problem. Because of the mostly synergistic nature of the impacts, no single factor can usually be identified as the primary cause of stuck fermentation. In this study, several strategies to evolutionarily engineer wine yeast strains that are expected to reduce the occurrence of stuck and sluggish fermentations are investigated. In particular, the investigations focus on improving the ability of wine yeast to better respond to two of the factors that commonly contribute to the occurrence of such fermentations, nitrogen limitation and the development of an unfavorable ratio of glucose and fructose during fermentation. The evolutionary engineering strategies relied on mass-mating or mutagenesis of successful commercial wine yeast strains to generate yeast populations of diverse genetic backgrounds. These culture populations were then exposed to enrichment procedures either in continuous or sequential batch cultivation conditions while applying specific evolutionary selection pressures. In one of the stragegies, yeast populations were subjected to continuous cultivation under hexose, and especially fructose, limitation. The data show that the strains selected after this procedure were usually able to out-compete the parental strains in these selective conditions. However, the improved phenotype was not detectable when strains were evaluated in laboratory scale wine fermentations. In contrast, the selection procedure in continuous cultivation in nitrogen limiting conditions proved to be highly efficient for the generation of yeast strains with higher total fermentative capacity in low nitrogen musts. Furthermore, yeast strains selected after mutagenesis and sequential batch cultivation in synthetic musts with a very low glucose on fructose ratio showed a fructose specific improvement in fermentative capacity. This phenotype, which corresponds to the desired outcome, was also present in laboratory scale wine fermentations, where the discrepancy between glucose and fructose utilization of the selected strains was significantly reduced when compared to the parents. Finally, a novel strategy for the rectification of stuck fermentations was adjusted to industrial conditions. The strategy is based on the use of a natural isolate of the yeast species Zygosaccharomyces bailii, which is known for its preference of fructose. This process was successfully established and implemented in the wine industry.
8

Charakterizace vybraných bakteriálních kmenů získaných během evolučních experimentů / Characterization of bacterial strains obtained in evolutionary engineering

Hrabalová, Vendula January 2020 (has links)
This diploma thesis deals with application of evolutionary engineering on PHA producing bacterial strains. Two bacterial strains, Cupriavidus necator H16 and Halomonas halophila, were chosen for the evolutionary experiments. Copper cations (Cu2+) and sodium chloride (NaCl) were chosen as the selective pressure for C. necator H16; acetic acid (AA) and levulinic acid (LA) for Halomonas halophila. The adapted strains were during long-time evolutionary experiments characterized by GC-FID and SEC-MALS. The growth of the adapted strains was studied by the mean of optical density measurement. The amount of viable cells was determined by spectral FC after their expositon to selected stress factors. Specific enzyme activities of enzymes involved in citrate and glyoxalate cycle, enzymes generating NADPH, LA metabolism enzyme and PHA biosynthesis enzymes were determined. The adapted strains were compared with the wild-type of strains. The successfull adaptation of C. necator H16 adapted to Cu2+ was detected. Biomass and PHA production of both wild and adapted H. halophila strains cultivated in lignocellulosis waste were determined. It was found out that H. halophila adapted to the LA is capable of producing more PHA than the wild strain of this bacteria.

Page generated in 0.1297 seconds