The goal of Evolutionary Robotics (ER) is the development of automatic processes for the synthesis of robot control systems using evolutionary computation. The idea that it may be possible to synthesise robotic control systems using an automatic design process is appealing. However, ER is considerably more challenging and less automatic than its advocates would suggest. ER applies methods from the field of neuroevolution to evolve robot control systems. Neuroevolution is a machine learning algorithm that applies evolutionary computation to the design of Artificial Neural Networks (ANN). The aim of this thesis is to assay the practical characteristics of neuroevolution by performing bulk experiments on a set of Reinforcement Learning (RL) problems. This thesis was conducted with the view of applying neuroevolution to the design of neurocontrollers for small low-cost Autonomous Underwater Vehicles (AUV). A general approach to neuroevolution for RL problems is presented. The is selected to evolve ANN connection weights on the basis that it has shown competitive performance on continuous optimisation problems, is self-adaptive and can exploit dependencies between connection weights. Practical implementation issues are identified and discussed. A series of experiments are conducted on RL problems. These problems are representative of problems from the AUV domain, but manageable in terms of problem complexity and computational resources required. Results from these experiments are analysed to draw out practical characteristics of neuroevolution. Bulk experiments are conducted using the inverted pendulum problem. This popular control benchmark is inherently unstable, underactuated and non-linear: characteristics common to underwater vehicles. Two practical characteristics of neuroevolution are demonstrated: the importance of using randomly generated evaluation sets and the effect of evaluation noise on search performance. As part of these experiments, deficiencies in the benchmark are identified and modifications suggested. The problem of an underwater vehicle travelling to a goal in an obstacle free environment is studied. The vehicle is modelled as a Dubins car, which is a simplified model of the high-level kinematics of a torpedo class underwater vehicle. Two practical characteristics of neuroevolution are demonstrated: the importance of domain knowledge when formulating ANN inputs and how the fitness function defines the set of evolvable control policies. Paths generated by the evolved neurocontrollers are compared with known optimal solutions. A framework is presented to guide the practical application of neuroevolution to RL problems that covers a range of issues identified during the experiments conducted in this thesis. An assessment of neuroevolution concludes that it is far from automatic yet still has potential as a technique for solving reinforcement problems, although further research is required to better understand the process of evolutionary learning. The major contribution made by this thesis is a rigorous empirical study of the practical characteristics of neuroevolution as applied to RL problems. A critical, yet constructive, viewpoint is taken of neuroevolution. This viewpoint differs from much of the reseach undertaken in this field, which is often unjustifiably optimistic and tends to gloss over difficult practical issues.
Identifer | oai:union.ndltd.org:ADTP/222326 |
Date | January 2009 |
Creators | Smart, Royce Raymond, roycesmart@hotmail.com |
Publisher | RMIT University. Aerospace, Mechanical and Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Royce Raymond Smart |
Page generated in 0.0018 seconds