Return to search

Development of soil-eps mixes for geotechnical applications

Global concern about the environmental impacts of waste disposal and stringent implementation of environmental laws lead to numerous research on recycled materials. Increased awareness about the inherent engineering values of waste materials, lack of landfill sites and strong demand for construction materials have encouraged research on composite materials, which are either fully or partly made of recycled materials. This trend is particularly strong in transportation and geotechnical projects, where huge quantities of raw materials are normally consumed. Owing to the low mass-to-volume ratio, disposal of Expanded Polystyrene (EPS) is a major problem. In addition, EPS recycling methods are expensive, labour intensive and energy demanding. Hence, this thesis is focused on the development of a new soil composite made by mixing recycled EPS with expansive clays. Given the high cost of damage to various buildings, structures and pavements caused by the unpredictable ground movements associated with expansive soils, it has been considered prudent to try and develop a new method of soil modification using recycled EPS beads as a swell-shrink modifier and desiccation crack controller. The innovative application of recycled EPS as a soil modifier will minimise the quantity of waste EPS destined to the landfill considerably. An extensive experimental investigation has been carried out using laboratory reconstituted expansive soils - to represent varied plasticity indices - consisting of fine sand and sodium bentonite. Three soils notated as SB16, SB24 and SB32 representing 16%, 24% and 32% of bentonite contents respectively were tested with four EPS contents of 0.0%, 0.3%, 0.6% and 0.9%. The tests performed include compaction, free swell, swell pressure, shrinkage, desiccation, shear strength and hydraulic conductivity. All the tests have been performed at the respective maximum dry unit weight and optimum moisture content of the mixes. It has been observed that by mixing of recycled EPS beads with the reconstituted soil, a lightweight geomaterial is produced with improved engineering properties in terms of dry unit weight, swelling, shrinkage and desiccation. The EPS addition depends on the moulding moisture content of the soil. With increasing moisture content, additional EPS can be added. Also, there is a reduction in dry unit weight with the addition of EPS. Furthermore, the reduction of swell-shrink potential and desiccation cracking in soils, for example, is related to the partial replacement of soil particles as well as the elasticity of the EPS beads. There is a reduction in shear strength with the addition of EPS to soils. However, mixing of chemical stabilisers along with EPS can enhance the strength in addition to improved overall properties.

Identiferoai:union.ndltd.org:ADTP/265534
Date January 2007
CreatorsIlluri, Hema Kumar
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsCopyright Hema Kumar Illuri

Page generated in 0.0012 seconds