Return to search

Comportement hygroscopique et couplage hygromécanique dans les composites lin / époxy : approche expérimentale multi-échelle et modélisation / Hygroscopic behaviour and hygromechanical coupling in flax / epoxy composites : multi-scale experimental approach and modelling

Les renforts à base de fibres de lin sont aujourd’hui une alternative capable de concurrencer les fibres synthétiques conventionnelles puisqu’ils sont écologiques, économiques et présentent des propriétés mécaniques intéressantes. Cependant, leur inconvénient majeur est leur absorption d’eau potentiellement importante qui affecte leurs propriétés mécaniques. Ce projet de recherche propose d’étudier le comportement hygroscopique et le couplage hygro-mécanique dans les composites lin / époxy. Cette étude repose sur une approche expérimentale multi-échelle et une modélisation du comportement visco-élasto-plastique avec prise en compte du couplage hygro-mécanique des composites renforcés par des fibres de lin. Les cinétiques de diffusion dans l’époxy et dans le composite ont été modélisées par une loi de type Langmuir et Fick respectivement. Les coefficients d’hygro-expansion des composites et des fils élémentaires qui constituent le renfort tissu ont été déterminés expérimentalement. Une étude de l’influence du conditionnement jusqu’à saturation à différentes humidités relatives sur le comportement mécanique dans les trois directions du stratifié a également été menée. Cette étude a montré l’existence d’une teneur en eau optimale pour laquelle les propriétés mécaniques sont optimales. L’émergence d’un comportement à deux régions linéaires a été mise en évidence et attribuée à la présence d’hétérogénéités locales au sein du renfort tissu. Des essais de fluage / recouvrance et de relaxation / effacement ont permis de mettre en place un modèle visco-élasto-plastique avec prise en compte du couplage hygro-mécanique. Ce modèle offre de bonnes capacités de prédiction et permettra de prévoir le comportement des structures composites renforcés par des fibres de lin en atmosphère humide. / Flax fibre reinforcements are nowadays an alternative able to compete with conventional synthetic fibres since they are ecological, economic and have interesting mechanical properties. However, their major drawback is their potentially significant water absorption which affects their mechanical properties. This research project proposes to study the hygroscopic behaviour and hygro-mechanical coupling in flax / epoxy composites. This study is based on a multi-scale experimental approach. A modelling of visco-elasto-plastic behaviour taking into account the hygro-mechanical coupling within flax /epoxy composites is established. The diffusion kinetics in composites were modelled by a Fick law. However, the diffusion kinetics in epoxy were modelled by a Langmuir law. The hygro-expansion coefficients of the composites and the elementary yarns that constitute the fabric reinforcement were determined experimentally. A study of the influence of conditioning until saturation at different relative humidities on the mechanical behaviour in the three main directions of the laminates was conducted. This study showed the existence of an optimal water content for which the mechanical properties are maximum. The emergence of a two-linear-region behaviour was pointed out and attributed to the presence of local heterogeneities within the fabric reinforcement. Creep / recovery and stress relaxation tests were exploited in order to develop a visco-elastoplastic model with consideration of the hygro-mechanical coupling. This model offers good predictive capabilities and could be used to predict the behaviour of flax fibres reinforced composite structures in humid atmospheres.

Identiferoai:union.ndltd.org:theses.fr/2018NORMC281
Date21 December 2018
CreatorsAbida, Marwa
ContributorsNormandie, École nationale d'ingénieurs de Sfax (Tunisie), Vivet, Alexandre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds