Return to search

Modelling Gene Expression during Ontogenetic Differentiation

<p>Various types of recurrent neural networks have been used as models for the regulatory relationships between genes. The neural network is trained on the data from micro-array techniques, each gene corresponds to a neuron in the network. The data from the micro-array technologies has numerous genes, but usually involves few samples, this makes the network heavily under-determined. In this work we will propose a method that can cope with the poorness of the data. We will use a Hopfield-type neural network to model the ontogenetic differentiation of female honeybees. A method that identifies the genes that determine the castes is proposed.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:his-590
Date January 2001
CreatorsLundell, Simon
PublisherUniversity of Skövde, Department of Computer Science, Skövde : Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0018 seconds