Masonry walls subjected to out-of-plane loading, such as in a seismic event, require reinforcement to improve the ductility of the system. In current masonry construction practice, reinforcement is placed internally and fully grouted. For new construction this can make the wall unjustifiably heavy by not taking advantage of its light, hollow structure. For existing construction, it is difficult to retrofit using this technique. Additionally, the reinforcement is located close to the neutral axis which reduces its effectiveness. Fiber-Reinforced Polymer (FRP) bars, strips and sheets are becoming increasingly popular in construction applications due to their noncorrosive nature and ease of installation. Also, stainless steel bars are used where the structure is exposed to a corrosive environment but have not found wider application for masonry structures. This study is an experimental investigation of the structural performance of masonry walls reinforced with Near-Surface-Mounted (NSM) FRP and stainless steel reinforcement under out-of-plane bending. Additionally, walls with Externally Bonded (EB) FRP sheets were tested. The study simulates retrofitting applications and also proposes the NSM technique for new wall construction, using pre-grooved blocks, in lieu of the conventional method of internal reinforcing and grouting. To accommodate the NSM reinforcement, the grooves in the masonry blocks were aligned with ducts used to anchor the NSM reinforcement in the concrete footing. Seven wall specimens were tested, including walls reinforced with conventional and stainless steel bars, glass-fibre reinforced polymer (GFRP), and carbon-FRP (CFRP) reinforcement. The study demonstrated the feasibility and effectiveness of the NSM technique for new construction. Walls with NSM reinforcement showed a superior performance to those with EB reinforcement. It was shown that increasing the FRP reinforcement ratio may result in a change of failure mode, and as such, the increase in strength may not be proportional to the increase in reinforcement ratio. NSM steel-reinforced walls showed a superior performance in terms of strength, stiffness and the ductility associated with the formation of a plastic hinge at the base. / Thesis (Master, Civil Engineering) -- Queen's University, 2010-05-31 06:24:20.976
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5695 |
Date | 31 May 2010 |
Creators | Mierzejewski, Wojciech |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0017 seconds