The Cloud Radio Access Network (RAN) is a technology used in the telecommunications industry. It provides a flexible, scalable, and costeffective solution for managing and delivering seamless wireless network services. However, the testing of Cloud RAN applications poses formidable challenges due to its complex nature, resulting in potential delays in product delivery and amplified costs. Using the power of test automation is an approach to tackling these challenges. By automating the testing process, we can reduce manual efforts, enhance the accuracy and efficiency of testing procedures, and ultimately expedite the delivery of high-quality products. In this era of cutting-edge advancements, artificial intelligence (AI) and machine learning (ML) can be used to aid Cloud RAN testing. These technologies empower us to swiftly identify and address complex issues. The goal of this thesis is to have a data-driven approach toward Cloud RAN test automation. Machine learning along with natural language processing techniques are used to automatically predict test cases from test instructions. The test instructions are analyzed and keywords are extracted from them using natural language processing techniques. The performance of two keyword extraction techniques is compared. SpaCy was the best-performing keyword extractor. Test script prediction from these keywords is done using two approaches; using test script names and using test script contents. Random Forest was the best performing model for both these approaches when the data were oversampled and when it was undersampled as well. / Cloud Radio Access Network (RAN) är en revolutionerande teknik som används inom telekommunikationsindustrin. Det ger en flexibel, skalbar och kostnadseffektiv lösning för att hantera och leverera sömlösa trådlösa nätverkstjänster. Testningen av Cloud RAN-applikationer innebär dock enorma utmaningar på grund av dess komplexa natur, vilket resulterar i potentiella förseningar i produktleverans och förstärkta kostnader. Att använda kraften i testautomatisering är en avgörande metod för att tackla dessa utmaningar. Genom att automatisera testprocessen kan vi dramatiskt minska manuella ansträngningar, avsevärt förbättra noggrannheten och effektiviteten i testprocedurerna och i slutändan påskynda leveransen av högkvalitativa produkter. I denna era av banbrytande framsteg kan artificiell intelligens (AI) och maskininlärning (ML) användas för att revolutionera Cloud RAN-testning. Dessa banbrytande teknologier ger oss möjlighet att snabbt identifiera och ta itu med komplexa problem. Målet med detta examensarbete är att ha ett datadrivet förhållningssätt till Cloud RAN-testautomatisering. Maskininlärning tillsammans med naturliga språkbehandlingstekniker används för att automatiskt generera testfall från testinstruktioner. Testinstruktionerna analyseras och nyckelord extraheras från dem med hjälp av naturliga språkbehandlingstekniker. Resultatet av två sökordsextraktionstekniker jämförs. SpaCy var den bäst presterande sökordsextraktorn. Förutsägelse av testskript från dessa nyckelord görs med två metoder; använda testskriptnamn och använda testskriptinnehåll. Random forests var den bäst presterande modellen för båda dessa tillvägagångssätt när data överstämplades och även undersamplades.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-340090 |
Date | January 2023 |
Creators | Santosh Nimbhorkar, Jeet |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:848 |
Page generated in 0.4932 seconds