Return to search

Efficiently feeding single-mode fiber photonic spectrographs with an extreme adaptive optics system: on-sky characterization and preliminary spectroscopy

High-order wavefront correction is not only beneficial for high-contrast imaging, but also spectroscopy. The size of a spectrograph can be decoupled from the size of the telescope aperture by moving to the diffraction limit which has strong implications for ELT based instrument design. Here we present the construction and characterization of an extremely efficient single-mode fiber feed behind an extreme adaptive optics system (SCExAO). We show that this feed can indeed be utilized to great success by photonic-based spectrographs. We present metrics to quantify the system performance and some preliminary spectra delivered by the compact spectrograph.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622807
Date03 August 2016
CreatorsJovanovic, N., Cvetojevic, N., Schwab, C., Norris, B., Lozi, J., Gross, S., Betters, C., Singh, G., Guyon, O., Martinache, F., Doughty, D., Tuthill, P.
ContributorsUniv Arizona, Steward Observ, Univ Arizona, Ctr Opt Sci, Subaru Telescope, National Astronomical Observatory of Japan (United States), Australian Astronomical Observatory (Australia), Macquarie Univ. (Australia), The Univ. of Sydney (Australia), Subaru Telescope, National Astronomical Observatory of Japan (United States), Macquarie Univ. (Australia), The Univ. of Sydney (Australia), Jet Propulsion Lab. (United States), Subaru Telescope, National Astronomical Observatory of Japan (United States), Observatoire de la Côte d’Azur (France), Subaru Telescope, National Astronomical Observatory of Japan (United States), The Univ. of Sydney (Australia)
PublisherSPIE-INT SOC OPTICAL ENGINEERING
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016 SPIE
Relationhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2234299

Page generated in 0.0023 seconds