• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser a fibra dopada com Érbio com múltiplos comprimentos de onda e múltiplos regimes de operação simultâneos

Santos, Cláudia Barros dos 21 January 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:34Z (GMT). No. of bitstreams: 1 Claudia Barros dos Santos.pdf: 3294972 bytes, checksum: b848d69d9c6a8c824e5142a4e3659d37 (MD5) Previous issue date: 2011-01-21 / In this work, we inserted two Arrayed Waveguide Gratings (AWGs), in an Erbium doped fiber ring cavity laser, where a single gain medium at room temperature can emit laser in multiples wavelengths, simultaneous and individualy controlled. The setup allowed us to check different functions in the ring cavity. Here we show emission in CW regime, Passive Mode-Locking, using Carbon Nanotubes as saturable absorbers and finally Active mode-locking at 7GHz, simultaneously. / Neste trabalho, fez-se a inserção de duas grades de difração matriciais com guias de onda, ou AWGs (Arrayed Waveguide Gratings) em uma cavidade laser de fibra dopada com Érbio, onde um único meio de ganho em temperatura ambiente pode gerar ação laser em múltiplos comprimentos de onda, com emissões simultâneas e controladas individualmente. A configuração utilizada permitiu o teste com diferentes regimes de operação simultâneos dentro da cavidade. Mostramos a possibilidade de emissão laser em regime CW, em regime de mode-locking passivo, com o uso de nanotubos de carbono como absorvedor saturável e, por último, em regime de modelocking ativo com uma freqüência de modulação de 7 GHz.
2

Laser a fibra dopada com Érbio com múltiplos comprimentos de onda e múltiplos regimes de operação simultâneos

Santos, Cláudia Barros dos 21 January 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:35Z (GMT). No. of bitstreams: 1 Claudia Barros dos Santos.pdf: 3294972 bytes, checksum: b848d69d9c6a8c824e5142a4e3659d37 (MD5) Previous issue date: 2011-01-21 / In this work, we inserted two Arrayed Waveguide Gratings (AWGs), in an Erbium doped fiber ring cavity laser, where a single gain medium at room temperature can emit laser in multiples wavelengths, simultaneous and individualy controlled. The setup allowed us to check different functions in the ring cavity. Here we show emission in CW regime, Passive Mode-Locking, using Carbon Nanotubes as saturable absorbers and finally Active mode-locking at 7GHz, simultaneously. / Neste trabalho, fez-se a inserção de duas grades de difração matriciais com guias de onda, ou AWGs (Arrayed Waveguide Gratings) em uma cavidade laser de fibra dopada com Érbio, onde um único meio de ganho em temperatura ambiente pode gerar ação laser em múltiplos comprimentos de onda, com emissões simultâneas e controladas individualmente. A configuração utilizada permitiu o teste com diferentes regimes de operação simultâneos dentro da cavidade. Mostramos a possibilidade de emissão laser em regime CW, em regime de mode-locking passivo, com o uso de nanotubos de carbono como absorvedor saturável e, por último, em regime de modelocking ativo com uma freqüência de modulação de 7 GHz.
3

Efficiently feeding single-mode fiber photonic spectrographs with an extreme adaptive optics system: on-sky characterization and preliminary spectroscopy

Jovanovic, N., Cvetojevic, N., Schwab, C., Norris, B., Lozi, J., Gross, S., Betters, C., Singh, G., Guyon, O., Martinache, F., Doughty, D., Tuthill, P. 03 August 2016 (has links)
High-order wavefront correction is not only beneficial for high-contrast imaging, but also spectroscopy. The size of a spectrograph can be decoupled from the size of the telescope aperture by moving to the diffraction limit which has strong implications for ELT based instrument design. Here we present the construction and characterization of an extremely efficient single-mode fiber feed behind an extreme adaptive optics system (SCExAO). We show that this feed can indeed be utilized to great success by photonic-based spectrographs. We present metrics to quantify the system performance and some preliminary spectra delivered by the compact spectrograph.
4

Broadband Arrayed Waveguide Grating Multiplexers on InP

Rausch, Kameron Wade January 2005 (has links)
Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defned the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm.Four and eight channel AWGs on InP, suitable for CWDM, were fabricated using a novel and versatile S-shape design. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations, which is key for low cost operation and packaging. It will be shown thatrefractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum.Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion causedfrom a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band.Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output,thereby eliminating ghost images and at the same time, increase transmission.
5

Wavelength Multiplexing of MEMS Pressure and Temperature Sensors Using Fiber Bragg Gratings and Arrayed Waveguide Gratings

Li, Weizhuo January 2005 (has links)
No description available.
6

Laser de fibra dopada com érbio multifuncional

Demori, Cláudia Barros dos Santos 25 August 2015 (has links)
Made available in DSpace on 2016-03-15T19:38:55Z (GMT). No. of bitstreams: 1 CLAUDIA BARROS DOS SANTOS DEMORI.pdf: 3640553 bytes, checksum: 13700107293ec12ced27c0e70d6fb334 (MD5) Previous issue date: 2015-08-25 / This work shows an Erbium doped-fiber Laser with many frequencies and many operation regimes based on integration of two paired arrayed waveguide gratings (AWGs) into a ring cavity. The AWGs are highlighted, since 2000, as key technology for multifrequencies lasers for optical communications, spectroscopy, image, astronomy and others applications. Fundamentally, gratings work splitting waveguide signal and since insertion in the cavity they allow simultaneous operating of tens of wavelength. We explore each one of these wavelength withing Erbium gain region, doing channels in different regimes of operation. These regimes may be continuous or pulsed. The advantage is that each channel may be modulated independently. Simultaneous operation with high repetition rates at 10 and 40 GHz were demonstrated, as continuous wave. The laser is stable, versatile and multifunctional. It is possible that more operating regimes, as passive mode-locking, be explored. We showed by this work efficient way to passive mode-locking by carbon nanotubes as saturable absorbers. Soon, the passive mode-locking is a potential regime for the demonstrated laser. As the new bi-dimensional materials, that look efficient for passive mode-locking and in the future, hybrid mode-locking, as graphene and black phosphor. / Esta tese trata de demonstrar um Laser de fibra dopada com Érbio com múltiplas frequências e múltiplos regimes de operação simultâneos baseados na integração de duas grades de difração pareadas (Arrayed Waveguide Gratings, AWGs) dentro de uma cavidade de laser de fibra. As AWGs são apontadas, desde o ano 2000, como tecnologia fundamental em lasers de múltiplas frequencias para as comunicações ópticas, para espectroscopia, imageamento, astronomia, e outras aplicações. Fundamentalmente, as grades funcionam como divisores do sinal óptico e quando inseridas dentro da cavidade de um laser de fibra permitem a operação simultânea de dezenas de comprimentos de onda. Neste trabalho, exploramos cada comprimento de onda, dentro da região de ganho do Érbio, com um regime de operação diferente. Esse regime pode ser pulsado ou contínuo. A vantagem do laser apresentado é que cada comprimento de onda é um canal que pode ser modulado de forma independente. Pôde-se demonstrar operação simultânea com regimes a altas taxas de repetição como 10 GHz e 40 GHz, assim como CW. O laser é estável, versátil e multifuncional. É possível que mais regimes de operação, como o regime de acoplamento de modos passivo sejam explorados. Mostramos ao longo deste trabalho maneiras eficientes de acoplar modos passivamente, utilizando nanotubos de carbono como absorvedores saturáveis, logo a técnica de acoplamento de modos passivo é um dos regimes em potencial para este laser. Assim como, o uso de novos materiais bidimensionais, que se mostram eficientes para o acoplamento de modos passivo e futuramente híbrido, como o grafeno e o fósforo negro.
7

Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions

Kakehashi, Shoji, Hasegawa, Hiroshi, Sato, Ken-ichi, Moriwaki, Osamu, Kamei, Shin 01 January 2009 (has links)
No description available.
8

Technology for photonic components in silica/silicon material structure

Wosinski, Lech January 2003 (has links)
The main objectives of this thesis were to develop a lowtemperature PECVD process suitable for optoelectronicintegration, and to optimize silica glass composition forUV-induced modifications of a refractive index in PECVDfabricated planar devices. The most important achievement isthe successful development of a low temperature silicadeposition, which for the first time makes it is possible tofabricate good quality low loss integrated components whilekeeping the temperature below 250oC during the entirefabrication process. Two strong absorption peaks thatappear at1.5 mm communication window due to N-H and Si-H bonds have beencompletely eliminated by process optimization. This openspossibilities for monolithic integration with other,temperature sensitive devices, such as semiconductor lasers anddetectors, or polymer-based structures on the common siliconplatform. PECVD technology for low loss amorphous silicon inapplication to SiO2/Si based photonic crystal structures hasbeen also optimized to remove hydrogen incorporated during thedeposition process, responsible for the porosity of thedeposited material and creation of similar to silica absorptionbands. Change of the refractive index of germanium doped silicaunder UV irradiation is commonly used for fabrication of UVinduced fiber Bragg gratings. Here we describe our achievementsin fabrication of fiber Bragg gratings and their application todistributed sensor systems. Recently we have built up a laserlab for UV treatment in application to planar technology. Wehave demonstrated the high photosensitivity of PECVD depositedGe-doped glasses (not thermally annealed) even without hydrogenloading, leading to a record transmission suppression of 47dBin a Bragg grating photoinduced in a straight buried channelwaveguide. We have also used a UV induced refractive indexchange to introduce other device modifications or functions,such as phase shift, wavelength trimming and control ofpolarization birefringence.The developed low temperature technology and the UVprocessing form a unique technology platform for development ofnovel integrated functional devices for optical communicationsystems. A substantial part of the thesis has been devoted tostudying different plasma deposition parameters and theirinfluence on the optical characteristics of fabricatedwaveguides to find the processing window giving the besttrade-off between the deposition rate,chamber temperatureduring the process, optical losses and presence of absorptionbands within the interesting wavelength range. The optimalconditions identified in this study are low pressure (300-400mTorr), high dilution of silane in nitrous oxide and high totalflow (2000 sccm), low frequency (380 KHz) RF source and high RFpower levels (800-1000 W). The thesis provides better understanding of the plasmareactions during the deposition process. RF Power is the keyparameter for increasing the rate of surface processes so as toaccommodate each atomic layer in the lowest energy statepossible. All the process conditions which favor a moreenergetic ion bombardment (i.e. low pressure, low frequency andhigh power) improve the quality of the material, making it moredense and similar to thermal oxide, but after a certain pointthe positive trend with increasing power saturates. As theenergy of the incoming ion increases, a competing effect setsin at the surface: ion induced damage and resputtering. Finally, the developed technologies were applied for thefabrication of some test and new concept devices for opticalcommunication systems including multimode interference (MMI)-based couplers/splitters, state-of-the-art arrayed waveguidegrating-based multi/ demultiplexers, the first Bragg gratingassisted MMI-based add-drop multiplexer, as well as moreresearch oriented devices such as a Mach-Zehnder switch basedon silica poling and a Photonic Crystal-based coupler. <b>Keywords:</b>silica-on-silicon technology, PECVD, plasmadeposition, photonic integrated circuits, planar waveguidedevices, UV Bragg gratings, photosensitivity, arrayed waveguidegratings, multimode interference couplers, add-dropmultiplexers.
9

Technology for photonic components in silica/silicon material structure

Wosinski, Lech January 2003 (has links)
<p>The main objectives of this thesis were to develop a lowtemperature PECVD process suitable for optoelectronicintegration, and to optimize silica glass composition forUV-induced modifications of a refractive index in PECVDfabricated planar devices. The most important achievement isthe successful development of a low temperature silicadeposition, which for the first time makes it is possible tofabricate good quality low loss integrated components whilekeeping the temperature below 250oC during the entirefabrication process. Two strong absorption peaks thatappear at1.5 mm communication window due to N-H and Si-H bonds have beencompletely eliminated by process optimization. This openspossibilities for monolithic integration with other,temperature sensitive devices, such as semiconductor lasers anddetectors, or polymer-based structures on the common siliconplatform. PECVD technology for low loss amorphous silicon inapplication to SiO2/Si based photonic crystal structures hasbeen also optimized to remove hydrogen incorporated during thedeposition process, responsible for the porosity of thedeposited material and creation of similar to silica absorptionbands.</p><p>Change of the refractive index of germanium doped silicaunder UV irradiation is commonly used for fabrication of UVinduced fiber Bragg gratings. Here we describe our achievementsin fabrication of fiber Bragg gratings and their application todistributed sensor systems. Recently we have built up a laserlab for UV treatment in application to planar technology. Wehave demonstrated the high photosensitivity of PECVD depositedGe-doped glasses (not thermally annealed) even without hydrogenloading, leading to a record transmission suppression of 47dBin a Bragg grating photoinduced in a straight buried channelwaveguide. We have also used a UV induced refractive indexchange to introduce other device modifications or functions,such as phase shift, wavelength trimming and control ofpolarization birefringence.The developed low temperature technology and the UVprocessing form a unique technology platform for development ofnovel integrated functional devices for optical communicationsystems.</p><p>A substantial part of the thesis has been devoted tostudying different plasma deposition parameters and theirinfluence on the optical characteristics of fabricatedwaveguides to find the processing window giving the besttrade-off between the deposition rate,chamber temperatureduring the process, optical losses and presence of absorptionbands within the interesting wavelength range. The optimalconditions identified in this study are low pressure (300-400mTorr), high dilution of silane in nitrous oxide and high totalflow (2000 sccm), low frequency (380 KHz) RF source and high RFpower levels (800-1000 W).</p><p>The thesis provides better understanding of the plasmareactions during the deposition process. RF Power is the keyparameter for increasing the rate of surface processes so as toaccommodate each atomic layer in the lowest energy statepossible. All the process conditions which favor a moreenergetic ion bombardment (i.e. low pressure, low frequency andhigh power) improve the quality of the material, making it moredense and similar to thermal oxide, but after a certain pointthe positive trend with increasing power saturates. As theenergy of the incoming ion increases, a competing effect setsin at the surface: ion induced damage and resputtering.</p><p>Finally, the developed technologies were applied for thefabrication of some test and new concept devices for opticalcommunication systems including multimode interference (MMI)-based couplers/splitters, state-of-the-art arrayed waveguidegrating-based multi/ demultiplexers, the first Bragg gratingassisted MMI-based add-drop multiplexer, as well as moreresearch oriented devices such as a Mach-Zehnder switch basedon silica poling and a Photonic Crystal-based coupler.</p><p><b>Keywords:</b>silica-on-silicon technology, PECVD, plasmadeposition, photonic integrated circuits, planar waveguidedevices, UV Bragg gratings, photosensitivity, arrayed waveguidegratings, multimode interference couplers, add-dropmultiplexers.</p>

Page generated in 0.1067 seconds