Orientador: Edson Denis Leonel / Banca: Iberê Luiz Caldas / Banca: Cesar Rogerio de Oliveira / Resumo: Estudaremos algumas propriedades dinâmicas para uma partícula clássica confinada em uma caixa de potencial com potenciais infinitos nas bordas e contendo um poço ou barreira de potencial dependentes periodicamente do tempo. A dinâmica de ambos os sistemas é descrita através de mapa bidimensional, não-linear e que preserva a área no espaço de fases nas variáveis energia e tempo. Os espaços de fases são mistos e observáveis médios nos mares caóticos são descritos usando argumentos de escala. Expoentes críticos foram obtidos perto da transiçaõ de integrabilidade para não integrabilidade, assim como expoentes de Lyapunov. O formalismo apresentado aqui é robusto e pode ser estendido para diferentes tipos de mapeamentos / Abstract: Some dynamical properties for a classical particle inside a box of potential with infinite potentials at the edges and containing a time-dependent potential well or barrier are studied. The dynamics for both systems are described by a two dimensional map, non-linear and area preserving map in the variables energy and time. Critical exponents were obtained near the transition from integrability to non-integrability. Lyapunov exponents were used to characterize the chaotic dynamics. The formalism presented here is robust and can be extended to different kinds of mappings / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000675916 |
Date | January 2011 |
Creators | Costa, Diogo Ricardo da. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Geociências e Ciências Exatas. |
Publisher | Rio Claro : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 45 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.002 seconds