Return to search

Structure and dynamics of liquid helium systems and their interaction with atomic dopants and free electrons

This thesis presents a collection of four papers published in peer-reviewed scientific journals plus a manuscript yet to be submitted, all of them in the field of low temperature physics and quantum fluids. Each of these works reports a step forward in the ever-developing theoretical description of helium systems by means of density functional theory.
The first two papers deal with questions related to the groundstate description of helium complexes around atomic impurities. We have computed such structure and determined its effect on the dipole absorption spectrum of Na in (3)He—(4)He clusters and of Mg in the homogeneous, isotopically mixed liquid.
We have also explored the limits of density functional calculations for a small number of helium atoms interacting with a linear carbonyl sulfide (OCS) molecule. To this end we have implemented a Kohn-Sham scheme for 3He and computed the structure of OCS@3HeN clusters for N up to 40.
The next three papers deal with the real-time description of dynamical processes in helium systems of experimental interest. We present an efficient and quantitatively accurate procedure to compute dynamical processes, namely the dynamics of an excited electron bubble and of an excited silver impurity, following a time-dependent density functional theory (TDDFT) for helium coupled to the appropiate dynamics of impurities.
In the case of the electron bubble, we have related the experimental disappearance of 1P bubbles at high pressures with the existence of a nonradiative de-excitation path involving the bubble splitting about 20 picoseconds after the excitation.
In the case of the desorption of a silver atom from a He drop, our dynamical calculations predict a range of velocities for the ejected impurity consistent with the experimental velocity distribution, which can be taken as indirect evidence of the superfluidity of helium nanodroplets. / En esta tesis se presenta una colección de cuatro artículos publicados y un manuscrito aún no publicado, todos ellos en el campo de la física de bajas temperaturas y fluidos cuánticos. Cada uno de ellos reporta un paso adelante en la descripción teórica de los sistemas de helio por medio de la teoría del funcional de la densidad. Los primeros dos artículos están clasificados como “estructura" ya que tratan cuestiones relacionadas con la descripción del estado fundamental de complejos de helio dopados con impurezas atómicas. En ellos hemos calculado la estructura y determinado su efecto sobre el espectro de absorción dipolar del Na en agregados de (3)He-(4)He y del Mg en el líquido homogéneo e isotópicamente mezclado. Para el caso de Na en gotas se ha encontrado que, a pesar de necesitar una gran cantidad de (3)He para que la capa exterior de la gota sature, el espectro de la impureza es muy insensible a la composición isotópica y rápidamente satura al valor que toma en las gotas de (3)He puras. Para Mg en el líquido mezclado, la presencia de (3)He induce cambios en el espectro mucho más pequeños que su anchura característica, por lo que se ha encontrado que el efecto general de la composición isotópica de la mezcla en la espectroscopia es mínima.

Hemos explorado también los límites del funcional de la densidad para un número pequeño de átomos de helio interactuando con una molécula lineal de sulfuro de carbonilo (OCS). Para ello hemos implementado un esquema de Kohn-Sham para el (3)He y hemos obtenido la estructura de agregados OCS@(3)He(N) para un número de átomos “N” hasta 40.

Hemos comparado los resultados de los agregados de (4)He con el mismo número de átomos y hemos encontrado que la alta anisotrop_á de la molécula de OCS magni_ca los efectos de las diferentes estadísticas de cada isótopo. Nuestra estimación de los momentos de inercia de estos agregados es consistente con la interpretación de los datos experimentales que sugieren una estructura de 11 átomos de helio rotando solidariamente con la molécula de OCS.

Los siguientes tres trabajos, clasificados como “dinámica", describen la evolución temporal de ciertos procesos de interés experimental en los sistemas de helio. Mientras que las publicaciones sobre la estructura completan una línea de trabajo bien establecida, las de esta sección abren un nuevo frente de exploración teórica sobre los procesos dinámicos con resolución de picosegundos. En ellos se presenta un procedimiento eficiente para describirlos cuantitativamente mediante una teoría del funcional de la densidad dependiente del tiempo (TDDFT, por sus siglas en inglés) para el helio, acoplado a la dinámica adecuada para la impureza. Cuál es la dinámica “adecuada" depende de las propiedades de la impureza: para la burbuja electrónica 1P se puede utilizar una descripción puramente mecanocuántica del electrón en una aproximación adiabática, mientras que para la burbuja 2P la aproximación adiabática no es aplicable y se deben acoplar las evoluciones en tiempo real del helio y del electrón. Para una impureza masiva como la Ag una descripción clásica de su movimiento es suficiente, pero el efecto de spin-órbita es lo suficientemente importante como para que el estado electrónico del átomo deba tenerse en cuenta en la dinámica como un grado de libertad cuantizado
.
En el caso de las burbujas electrónicas, hemos relacionado la desaparición de las burbujas 1P a altas presiones con la existencia de un camino de relajación no-radiativo que causa la rotura de la burbuja en dos mitades casi esféricas tras haber transcurrido unos 20 picosegundos desde su excitación. Hemos sido capaces de establecer esta relación gracias a que nuestro cálculo predice la “fisión" de la burbuja solo para presiones superiores a 1 bar, que es el mismo umbral observado experimentalmente para la desaparición de las burbujas 1P. Teniendo en cuenta que aumentar la presión en 1 bar aumenta la densidad de saturación del líquido en poco más de un 1 %, la exactitud de este resultado indica que TDDFT contiene la física relevante para describir este tipo de procesos y tiene capacidad de predicción cuantitativa. También hemos encontrado un marcado cambio en el comportamiento del espectro de absorción con resolución temporal de la burbuja 1P dependiendo de si ésta fisiona o no, es decir, dependiendo de la presión del líquido.

La observación experimental de este cambio y su determinación podrá completar la información obtenida en los experimentos de cavitación y fotoconductividad. En el caso de la desorción de un átomo de plata tras su fotoexcitación en el interior de una gota de He, nuestros cálculos dinámicos predicen un rango de velocidades para la impureza consistente con la distribución de velocidades experimental. Esta velocidad es el resultado de cuánta energía transfiere la impureza a la gota, lo cual depende de los modos de excitación disponibles para dicha transferencia. Nuestra descripción del líquido solo permite excitaciones colectivas tales como ondas de densidad u oscilaciones de superficie, por lo que la compatibilidad de nuestros resultados con los datos experimentales se puede tomar como una evidencia indirecta de la superfluidez de las nanogotas de helio. Adicionalmente hemos descartado la nucleación vórtices como un posible canal de transferencia de energía en gotas nanoscópicas al no haberlos generado en nuestros cálculos.

Identiferoai:union.ndltd.org:TDX_UB/oai:www.tdx.cat:10803/116444
Date02 May 2013
CreatorsMateo Valderrama, David
ContributorsBarranco Gómez, Manuel, Pi Pericay, Martí, Universitat de Barcelona. Departament d'Estructura i Constituents de la Matèria
PublisherUniversitat de Barcelona
Source SetsUniversitat de Barcelona
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format78 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/3.0/es/

Page generated in 0.003 seconds