Return to search

Folheações ortogonais em variedades riemannianas / Orthogonal foliations on riemannian manifolds

Neste trabalho, estabelecemos uma equação que relaciona a curvatura de Ricci de uma variedade riemanniana M e as segundas formas fundamentais de duas folheações ortogonais de dimensões complementares, F e F, definidas em M. Usando essa equação, encontramos uma estimativa da curvatura média da folheação F e uma condição necessária e suficiente para que tal folheação seja totalmente geodésica. Mostramos também uma condição suficiente para que M seja localmente um produto riemanniano das folhas de F e F, se uma das folheações for totalmente umbílica. Por fim, provamos ainda uma fórmula integral válida para tais folheações. / In this work, we and an equation that relates the Ricci curvature of a riemannian manifold M and the second fundamental forms of two orthogonal foliations of complementary dimensions, F and F, defined on M. Using this equation, we and an estimate of the mean curvature of the foliation F and a necessary and suficient condition for the foliation F to be totally geodesic. We also show a suficient condition for the manifold M to be locally a riemannian product of the leaves of F and F, if one of the foliations is totally umbilical. Finally, we also prove an integral formula for such foliations.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18012018-152530
Date29 November 2017
CreatorsEuripedes Carvalho da Silva
ContributorsAndré de Oliveira Gomes, Sebastiao Carneiro de Almeida, Fabiano Gustavo Braga Brito, Márcio Fabiano da Silva, Marcos Martins Alexandrino da Silva
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds