The Swedish energy power system is in the middle of a paradigm shift where the increased share of intermittent energy sources place higher demand on the ability to regulate and balance the generation and consumption of electricity. Demand flexibility, which means that consumers can adjust their energy consumption, is a promising solution to manage the imbalance in the power system. Electric heat pumps in residential buildings are recognized to have potential to serve as a flexible load. In this thesis, an aggregated multi-family residential building model is developed to generate heat load profiles for a larger number of buildings which facilitate an assessment of the heat pump flexibility. The flexibility assessment is performed for a local distribution grid area with 174 buildings and an electricity price region in Sweden with 10 146 buildings with heat pumps. The flexibility assessment analyses the heat pump load deviation between a base load case and a case where the heat pumps receive an off-signal. The assessment takes into consideration seven flexibility parameters and is conducted for ambient temperatures between -20°C and 15°C. The thermal inertia of multi-family residential buildings facilitates a load shift with a duration of 4.4 to 9.8 hours depending on the ambient temperature. The maximal average power reduction for one hour of 10 MW in a distribution grid and 169 MW in an electricity price region illustrates the potential of using heat pumps as a demand flexibility solution in the electricity grid.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-355135 |
Date | January 2018 |
Creators | Oehme, Sabina |
Publisher | Uppsala universitet, Fasta tillståndets fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC STS, 1650-8319 ; 18025 |
Page generated in 0.0025 seconds