The increased use of fossil fuels during the last centuries has caused elevated levels of carbon dioxide in the atmosphere. There is significant evidence that this is the cause of global warming. To mitigate the global warming, measures has to be taken to use renewable fuels and make processes more efficient. Catalytic gasification and downstream upgrading of synthesis gas is a promising technology for biofuel production, where previous research in black liquor gasification is currently expanding into a wider fuel feedstock. This work focuses on co-gasification of black liquor and by-products from other biofuel production technologies. The interesting by-products were crude glycerol from biodiesel production and spruce fermentation residue from ethanol production. The main goals were to study if the fuels can mix homogeneously and study the char reactivity. CO2 char gasification for mixtures of black liquor and glycerol or fermentation residue respectively was studied using thermogravimetric analysis (TGA) for four temperatures between 750°C and 900°C. The results show that glycerol can be mixed in all proportions with black liquor and indicate that the char reactivity is unchanged. The sustained char reactivity for blends is attributed to the volatility of glycerol. The fermentation residue does not produce a homogeneous mixture with black liquor and the char is less reactive. More studies should be performed to further elucidate the validity of the results.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-105223 |
Date | January 2015 |
Creators | Häggström, Gustav |
Publisher | Umeå universitet, Institutionen för tillämpad fysik och elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds