In this study, the mechanical properties of a fiber-reinforced cementitious composite (FRCC) were derived for specimens fabricated using two different methods of casting: conventional cast construction and pump-driven extrusion. Through the extrusion process, fibers are more likely to be oriented along the length of the member being cast and will therefore be more efficient since they are aligned parallel to the tensile stresses produced in flexure testing.
The FRCC employed 0.5% and 1% polyvinyl alcohol (PVA) fiber reinforcement by volume. The flexural properties of FRCC were determined using four-point bend tests according to a modified ASTM C1609. Calculations included the modulus of rupture (MOR) and flexural toughness based on load-deflection curves. The fracture properties of FRCC were determined by using three-point bend tests on the same design but having notched beams using the two-parameter fracture model (TPFM). Calculations included the Mode I critical stress intensity factor (KIC), the critical crack tip opening displacement (CTODc), the strain energy release rate (GIC), and the total fracture energy (GF).
The results show that enhanced ductility and post-peak behavior are achieved in concrete to which fibers have been added, as has been demonstrated in other studies, although this study further demonstrated how preferential fiber alignment produced via an extrusion can enhance fracture and flexural properties of cementitious composites. / Master of Science / Fiber-reinforced cementitious composite (FRCC) is a type of cementitious composite that contains fibers that are added to the mixture to improve its strength, durability, and ductility. One of the key factors of FRCC that affects its mechanical properties is the fiber alignment. Extrusion can be used as a method to preferentially align the fibers in order to maximize the benefit of fibers. Extruded FRCC can be pumped through a nozzle, making fiber alignment a convenient option for construction projects where traditional concrete placement methods would be difficult.
One of the main benefits of aligning fibers in pump-extruded FRCC is that it can improve cementitious composites' fracture and flexural toughness. Fracture toughness refers to the ability of a material to resist crack propagation, while flexural toughness refers to its ability to withstand bending. By adding fibers to the mixture, the fibers act as reinforcement and help to distribute stress more evenly throughout the material, leading to increased strength and ductility. Furthermore, the alignment of fibers within the mixture also plays a critical role in the fracture and flexural strength of the material. Research has shown that when fibers are aligned in a specific direction, they can improve the tensile strength of the concrete and decrease the likelihood of crack propagation. This can be especially useful in structures that are exposed to seismic activity or long-lasting heavy loads.
Overall, the use of pump extrusion-based method as a fiber alignment for FRCC can significantly improve the fracture and flexural strength of concrete. This makes it an attractive option for construction projects that require strong and durable members.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116074 |
Date | 21 August 2023 |
Creators | Jeon, Byeonguk |
Contributors | Civil and Environmental Engineering, Brand, Alexander S., King, Jonathan Lee, Roberts-Wollmann, Carin L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds