Mes travaux de thèse portent sur l’application de la théorie de l’échantillonnagecompressif (Compressed Sensing ou Compressive Sampling, CS) à la microscopie defluorescence, domaine en constante évolution et outil privilégié de la recherche fondamentaleen biologie. La récente théorie du CS a démontré que pour des signauxparticuliers, dits parcimonieux, il est possible de réduire la fréquence d’échantillonnagede l’information à une valeur bien plus faible que ne le prédit la théorie classiquede l’échantillonnage. La théorie du CS stipule qu’il est possible de reconstruireun signal, sans perte d’information, à partir de mesures aléatoires fortement incomplèteset/ou corrompues de ce signal à la seule condition que celui-ci présente unestructure parcimonieuse.Nous avons développé une approche expérimentale inédite de la théorie du CSà la microscopie de fluorescence, domaine où les signaux sont naturellement parcimonieux.La méthode est basée sur l’association d’une illumination dynamiquestructurée à champs large et d’une détection rapide à point unique. Cette modalitépermet d’inclure l’étape de compression pendant l’acquisition. En outre, nous avonsmontré que l’introduction de dimensions supplémentaires (2D+couleur) augmentela redondance du signal, qui peut être pleinement exploitée par le CS afin d’atteindredes taux de compression très importants.Dans la continuité de ces travaux, nous nous sommes intéressés à une autre applicationdu CS à la microscopie de super résolution, par localisation de moléculesindividuelles (PALM/STORM). Ces nouvelles techniques de microscopie de fluorescenceont permis de s’affranchir de la limite de diffraction pour atteindre des résolutionsnanométriques. Nous avons exploré la possibilité d’exploiter le CS pour réduiredrastiquement les temps d’acquisition et de traitement.Mots clefs : échantillonnage compressif, microscopie de fluorescence, parcimonie,microscopie de super résolution, redondance, traitement du signal, localisation demolécules uniques, bio-imagerie / My PhD work deals with the application of Compressed Sensing (or CompressiveSampling, CS) in fluorescence microscopy as a powerful toolkit for fundamental biologicalresearch. The recent mathematical theory of CS has demonstrated that, for aparticular type of signal, called sparse, it is possible to reduce the sampling frequencyto rates well below that which the sampling theorem classically requires. Its centralresult states it is possible to losslessly reconstruct a signal from highly incompleteand/or inaccurate measurements if the original signal possesses a sparse representation.We developed a unique experimental approach of a CS implementation in fluorescencemicroscopy, where most signals are naturally sparse. Our CS microscopecombines dynamic structured wide-field illumination with fast and sensitive singlepointfluorescence detection. In this scheme, the compression is directly integratedin the measurement process. Additionally, we showed that introducing extra dimensions(2D+color) results in extreme redundancy that is fully exploited by CS to greatlyincrease compression ratios.The second purpose of this thesis is another appealing application of CS forsuper-resolution microscopy using single molecule localization techniques (e.g.PALM/STORM). This new powerful tool has allowed to break the diffraction barrierdown to nanometric resolutions. We explored the possibility of using CS to drasticallyreduce acquisition and processing times.
Identifer | oai:union.ndltd.org:theses.fr/2014BORD0426 |
Date | 19 December 2014 |
Creators | Chahid, Makhlad |
Contributors | Bordeaux, Studer, Vincent, Dahan, Maxime |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds