• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 37
  • 4
  • Tagged with
  • 103
  • 53
  • 19
  • 19
  • 19
  • 19
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un modèle dynamique et parcimonieux du traitement automatisé de l'aspect dans les langues naturelles / A dynamic and parsimonious model for the processing of aspect in natural language

Munch, Damien 05 November 2013 (has links)
Dans cette thèse nous avons cherché et développé un modèle du traitement de l'aspect dans les langues naturelles. Notre objectif a été d'élaborer un modèle détaillé et explicatif qui montre la possibilité de traiter l'aspect sur un nombre choisi d’énoncés tout en suivant des contraintes fortes de parcimonie et de plausibilité cognitive. Nous avons réussi à mettre au point un modèle original dans sa réalisation, mais aussi dans ses résultats : des explications nouvelles sont données pour le traitement d'interprétations comme la répétition, la perfectivité ou l'inchoativité ; tout en dévoilant un phénomène original dit de "prédication". / The purpose of this work is to design and to implement a computational model for the processing of aspect in natural language.Our goal is to elaborate a detailed and explicative model of aspect. This model should be able to process aspect on a chosen number of sentences, while following strong constraints of parsimony and cognitive plausibility. We were successful in creating such a model, with both an original design and an extensive explanatory power. New explanations have been obtained for phenomena like repetition, perfectivity and inchoativity. We also propose a new mechanism based on the notion of “predication”.
2

Encodage des signaux de parole par inversion des motifs d'excitation auditive

Lakhdhar, Khaled January 2017 (has links)
On propose dans cette thèse de compresser et de synthétiser un signal audio par inversion de ses motifs d'excitation auditive. On traite l'approche du codage dans le domaine perceptuel et on propose un codeur qui exploite la redondance présente dans ces motifs. On commence par proposer un nouveau filtre auditif à faible complexité qui peut non seulement modéliser les réponses mécaniques de la membrane basilaire, synthétiser les réponses impulsionnelles du nerf auditif mais aussi expliquer les expériences du masquage fréquentiel. Ensuite on détaille l'exploitation de ce même banc de filtres auditifs pour la discipline de la compression des signaux audio. Des modèles de masquage adaptés à ce banc de filtres sont appliqués aux motifs d'excitation auditives pour obtenir des représentations éparses. Des expériences montrent que ce codeur permet de réduire considérablement la redondance dans le domaine perceptuel tout en maintenant une bonne qualité subjective de synthèse.
3

Représentations parcimonieuses pour les signaux multivariés / Sparse representations for multivariate signals

Barthelemy, Quentin 13 May 2013 (has links)
Dans cette thèse, nous étudions les méthodes d'approximation et d'apprentissage qui fournissent des représentations parcimonieuses. Ces méthodes permettent d'analyser des bases de données très redondantes à l'aide de dictionnaires d'atomes appris. Etant adaptés aux données étudiées, ils sont plus performants en qualité de représentation que les dictionnaires classiques dont les atomes sont définis analytiquement. Nous considérons plus particulièrement des signaux multivariés résultant de l'acquisition simultanée de plusieurs grandeurs, comme les signaux EEG ou les signaux de mouvements 2D et 3D. Nous étendons les méthodes de représentations parcimonieuses au modèle multivarié, pour prendre en compte les interactions entre les différentes composantes acquises simultanément. Ce modèle est plus flexible que l'habituel modèle multicanal qui impose une hypothèse de rang 1. Nous étudions des modèles de représentations invariantes : invariance par translation temporelle, invariance par rotation, etc. En ajoutant des degrés de liberté supplémentaires, chaque noyau est potentiellement démultiplié en une famille d'atomes, translatés à tous les échantillons, tournés dans toutes les orientations, etc. Ainsi, un dictionnaire de noyaux invariants génère un dictionnaire d'atomes très redondant, et donc idéal pour représenter les données étudiées redondantes. Toutes ces invariances nécessitent la mise en place de méthodes adaptées à ces modèles. L'invariance par translation temporelle est une propriété incontournable pour l'étude de signaux temporels ayant une variabilité temporelle naturelle. Dans le cas de l'invariance par rotation 2D et 3D, nous constatons l'efficacité de l'approche non-orientée sur celle orientée, même dans le cas où les données ne sont pas tournées. En effet, le modèle non-orienté permet de détecter les invariants des données et assure la robustesse à la rotation quand les données tournent. Nous constatons aussi la reproductibilité des décompositions parcimonieuses sur un dictionnaire appris. Cette propriété générative s'explique par le fait que l'apprentissage de dictionnaire est une généralisation des K-means. D'autre part, nos représentations possèdent de nombreuses invariances, ce qui est idéal pour faire de la classification. Nous étudions donc comment effectuer une classification adaptée au modèle d'invariance par translation, en utilisant des fonctions de groupement consistantes par translation. / In this thesis, we study approximation and learning methods which provide sparse representations. These methods allow to analyze very redundant data-bases thanks to learned atoms dictionaries. Being adapted to studied data, they are more efficient in representation quality than classical dictionaries with atoms defined analytically. We consider more particularly multivariate signals coming from the simultaneous acquisition of several quantities, as EEG signals or 2D and 3D motion signals. We extend sparse representation methods to the multivariate model, to take into account interactions between the different components acquired simultaneously. This model is more flexible that the common multichannel one which imposes a hypothesis of rank 1. We study models of invariant representations: invariance to temporal shift, invariance to rotation, etc. Adding supplementary degrees of freedom, each kernel is potentially replicated in an atoms family, translated at all samples, rotated at all orientations, etc. So, a dictionary of invariant kernels generates a very redundant atoms dictionary, thus ideal to represent the redundant studied data. All these invariances require methods adapted to these models. Temporal shift-invariance is an essential property for the study of temporal signals having a natural temporal variability. In the 2D and 3D rotation invariant case, we observe the efficiency of the non-oriented approach over the oriented one, even when data are not revolved. Indeed, the non-oriented model allows to detect data invariants and assures the robustness to rotation when data are revolved. We also observe the reproducibility of the sparse decompositions on a learned dictionary. This generative property is due to the fact that dictionary learning is a generalization of K-means. Moreover, our representations have many invariances that is ideal to make classification. We thus study how to perform a classification adapted to the shift-invariant model, using shift-consistent pooling functions.
4

Interactions entre rang et parcimonie en estimation pénalisée, et détection d'objets structurés / Interactions between rank and sparsity in penalized estimation, and detection of structured objects

Savalle, Pierre-André 21 October 2014 (has links)
Cette thèse est organisée en deux parties indépendantes. La première partie s'intéresse à l'estimation convexe de matrice en prenant en compte à la fois la parcimonie et le rang. Dans le contexte de graphes avec une structure de communautés, on suppose souvent que la matrice d'adjacence sous-jacente est diagonale par blocs dans une base appropriée. Cependant, de tels graphes possèdent généralement une matrice d'adjacente qui est aussi parcimonieuse, ce qui suggère que combiner parcimonie et range puisse permettre de modéliser ce type d'objet de manière plus fine. Nous proposons et étudions ainsi une pénalité convexe pour promouvoir parcimonie et rang faible simultanément. Même si l'hypothèse de rang faible permet de diminuer le sur-apprentissage en diminuant la capacité d'un modèle matriciel, il peut être souhaitable lorsque suffisamment de données sont disponible de ne pas introduire une telle hypothèse. Nous étudions un exemple dans le contexte multiple kernel learning localisé, où nous proposons une famille de méthodes a vaste-marge convexes et accompagnées d'une analyse théorique. La deuxième partie de cette thèse s'intéresse à des problèmes de détection d'objets ou de signaux structurés. Dans un premier temps, nous considérons un problème de test statistique, pour des modèles où l'alternative correspond à des capteurs émettant des signaux corrélés. Contrairement à la littérature traditionnelle, nous considérons des procédures de test séquentielles, et nous établissons que de telles procédures permettent de détecter des corrélations significativement plus faible que les méthodes traditionnelles. Dans un second temps, nous considérons le problème de localiser des objets dans des images. En s'appuyant sur de récents résultats en apprentissage de représentation pour des problèmes similaires, nous intégrons des features de grande dimension issues de réseaux de neurones convolutionnels dans les modèles déformables traditionnellement utilisés pour ce type de problème. Nous démontrons expérimentalement que ce type d'approche permet de diminuer significativement le taux d'erreur de ces modèles. / This thesis is organized in two independent parts. The first part focused on convex matrix estimation problems, where both rank and sparsity are taken into account simultaneously. In the context of graphs with community structures, a common assumption is that the underlying adjacency matrices are block-diagonal in an appropriate basis. However, these types of graphs are usually far from complete, and their adjacency representations are thus also inherently sparse. This suggests that combining the sparse hypothesis and the low rank hypothesis may allow to more accurately model such objects. To this end, we propose and analyze a convex penalty to promote both low rank and high sparsity at the same time. Although the low rank hypothesis allows to reduce over-fitting by decreasing the modeling capacity of a matrix model, the opposite may be desirable when enough data is available. We study such an example in the context of localized multiple kernel learning, which extends multiple kernel learning by allowing each of the kernels to select different support vectors. In this framework, multiple kernel learning corresponds to a rank one estimator, while higher-rank estimators have been observed to increase generalization performance. We propose a novel family of large-margin methods for this problem that, unlike previous methods, are both convex and theoretically grounded. The second part of the thesis is about detection of objects or signals which exhibit combinatorial structures, and we present two such problems. First, we consider detection in the statistical hypothesis testing sense, in models where anomalous signals correspond to correlated values at different sensors. In most existing work, detection procedures are provided with a full sample of all the sensors. However, the experimenter may have the capacity to make targeted measurements in an on-line and adaptive manner, and we investigate such adaptive sensing procedures. Finally, we consider the task of identifying and localizing objects in images. This is an important problem in computer vision, where hand-crafted features are usually used. Following recent successes in learning ad-hoc representations for similar problems, we integrate the method of deformable part models with high-dimensional features from convolutional neural networks, and shows that this significantly decreases the error rates of existing part-based models.
5

Block-constrained compressed sensing / Echantillonnage compressé avec acquisition structurée par blocs

Boyer, Claire 23 June 2015 (has links)
Dans cette thèse, nous visons à combiner les théories d'échantillonnage compressé (CS) avec une structure d'acquisition par blocs de mesures. D'une part, nous obtenons des résultats théoriques de CS avec contraintes d'acquisition par blocs, pour la reconstruction de tout vecteur s-parcimonieux et pour la reconstruction d'un vecteur x de support S fixé. Nous montrons que l'acquisition structurée peut donner de bons résultats de reconstruction théoriques, à condition que le signal à reconstruire présente une structure de parcimonie, adaptée aux contraintes d'échantillonnage. D'autre part, nous proposons des méthodes numériques pour générer des schémas d'échantillonnage efficaces reposant sur des blocs de mesures. Ces méthodes s'appuient sur des techniques de projection de mesure de probabilité. / This PhD. thesis is dedicated to combine compressed sensing with block structured acquisition. In the first part of this work, theoretical CS results are derived with blocks acquisition constraints, for the recovery of any s-sparse signal and for the recovery of a vector with a given support S.We show that structured acquisition can be successfully used in a CS framework, provided that the signal to reconstruct presents an additional structure in its sparsity, adapted to the sampling constraints.In the second part of this work, we propose numerical methods to generate efficient block sampling schemes. This approach relies on the measure projection on admissible measures.
6

Exploitation de la parcimonie pour la détection de cibles dans les images hyperspectrales / Exploitation of Sparsity for Hyperspectral Target Detection

Bitar, Ahmad 06 June 2018 (has links)
Le titre de cette thèse de doctorat est formé de trois mots clés: parcimonie, image hyperspectrale, et détection de cibles. La parcimonie signifie généralement « petit en nombre ou quantité, souvent répartie sur une grande zone ». Une image hyperspectrale est constituée d'une série d'images de la même scène spatiale, mais prises dans plusieurs dizaines de longueurs d'onde contiguës et très étroites, qui correspondent à autant de "couleurs". Lorsque la dimension spectrale est très grande, la détection de cibles devient délicate et caractérise une des applications les plus importantes pour les images hyperspectrales. Le but principal de cette thèse de doctorat est de répondre à la question « Comment et Pourquoi la parcimonie peut-elle être exploitée pour détecter de cibles dans les images hyperspectrales ? ». La réponse à cette question nous a permis de développer des méthodes de détection de cibles prenant en compte l'hétérogénéité de l'environnement, le fait que les objets d'intérêt sont situés dans des parties relativement réduites de l'image observée et enfin que l'estimation de la matrice de covariance d'un pixel d'une image hyperspectrale peut être compliquée car cette matrice appartient à un espace de grande dimension. Les méthodes proposées sont évaluées sur des données synthétiques ainsi que réelles, dont les résultats démontrent leur efficacité pour la détection de cibles dans les images hyperspectrales. / The title of this PhD thesis is formed by three keywords: sparsity, hyperspectral image, and target detection. Sparsity is a word that is used everywhere and in everyday life. It generally means « small in number or amount, often spread over a large area ». A hyperspectral image is a three dimensional data cube consisting of a series of images of the same spatial scene in a contiguous and multiple narrow spectral wavelength (color) bands. According to the high spectral dimensionality, target detection is not surprisingly one of the most important applications in hyperspectral imagery. The main objective of this PhD thesis is to answer the question « How and Why can sparsity be exploited for hyperspectral target detection? ». Answering this question has allowed us to develop different target detection methods that mainly take into consideration the heterogeneity of the environment, the fact that the total image area of all the targets is very small relative to the whole image, and the estimation challenge of the covariance matrix (surrounding the test pixel) in large dimensions. The proposed mehods are evaluated on both synthetic and real experiments, the results of which demonstrate their effectiveness for hyperspectral target detection.
7

Convex matrix sparsity for demixing with an application to graphical model structure estimation / Parcimonie matricielle convexe pour les problèmes de démixage avec une application à l'apprentissage de structure de modèles graphiques

Vinyes, Marina 27 November 2018 (has links)
En apprentissage automatique on a pour but d'apprendre un modèle, à partir de données, qui soit capable de faire des prédictions sur des nouvelles données (pas explorées auparavant). Pour obtenir un modèle qui puisse se généraliser sur les nouvelles données, et éviter le sur-apprentissage, nous devons restreindre le modèle. Ces restrictions sont généralement une connaissance a priori de la structure du modèle. Les premières approches considérées dans la littérature sont la régularisation de Tikhonov et plus tard le Lasso pour induire de la parcimonie dans la solution. La parcimonie fait partie d'un concept fondamental en apprentissage automatique. Les modèles parcimonieux sont attrayants car ils offrent plus d'interprétabilité et une meilleure généralisation (en évitant le sur-apprentissage) en induisant un nombre réduit de paramètres dans le modèle. Au-delà de la parcimonie générale et dans de nombreux cas, les modèles sont structurellement contraints et ont une représentation simple de certains éléments fondamentaux, comme par exemple une collection de vecteurs, matrices ou tenseurs spécifiques. Ces éléments fondamentaux sont appelés atomes. Dans ce contexte, les normes atomiques fournissent un cadre général pour estimer ce type de modèles. périodes de modèles. Le but de cette thèse est d'utiliser le cadre de parcimonie convexe fourni par les normes atomiques pour étudier une forme de parcimonie matricielle. Tout d'abord, nous développons un algorithme efficace basé sur les méthodes de Frank-Wolfe et qui est particulièrement adapté pour résoudre des problèmes convexes régularisés par une norme atomique. Nous nous concentrons ensuite sur l'estimation de la structure des modèles graphiques gaussiens, où la structure du modèle est encodée dans la matrice de précision et nous étudions le cas avec des variables manquantes. Nous proposons une formulation convexe avec une approche algorithmique et fournissons un résultat théorique qui énonce les conditions nécessaires pour récupérer la structure souhaitée. Enfin, nous considérons le problème de démixage d'un signal en deux composantes ou plus via la minimisation d’une somme de normes ou de jauges, encodant chacune la structure a priori des composants à récupérer. En particulier, nous fournissons une garantie de récupération exacte dans le cadre sans bruit, basée sur des mesures d'incohérence / The goal of machine learning is to learn a model from some data that will make accurate predictions on data that it has not seen before. In order to obtain a model that will generalize on new data, and avoid overfitting, we need to restrain the model. These restrictions are usually some a priori knowledge of the structure of the model. First considered approaches included a regularization, first ridge regression and later Lasso regularization for inducing sparsity in the solution. Sparsity, also known as parsimony, has emerged as a fundamental concept in machine learning. Parsimonious models are appealing since they provide more interpretability and better generalization (avoid overfitting) through the reduced number of parameters. Beyond general sparsity and in many cases, models are constrained structurally so they have a simple representation in terms of some fundamental elements, consisting for example of a collection of specific vectors, matrices or tensors. These fundamental elements are called atoms. In this context, atomic norms provide a general framework for estimating these sorts of models. The goal of this thesis is to use the framework of convex sparsity provided by atomic norms to study a form of matrix sparsity. First, we develop an efficient algorithm based on Frank-Wolfe methods that is particularly adapted to solve problems with an atomic norm regularization. Then, we focus on the structure estimation of Gaussian graphical models, where the structure of the graph is encoded in the precision matrix and study the case with unobserved variables. We propose a convex formulation with an algorithmic approach and provide a theoretical result that states necessary conditions for recovering the desired structure. Finally, we consider the problem of signal demixing into two or more components via the minimization of a sum of norms or gauges, encoding each a structural prior on the corresponding components to recover. In particular, we provide general exact recovery guarantees in the noiseless setting based on incoherence measures
8

Approches bayésiennes pour le débruitage des images dans le domaine des transformées multi-échelles parcimonieuses orientées et non orientées

Boubchir, Larbi 04 July 2007 (has links) (PDF)
Les images issues d'une chaîne d'acquisition sont généralement dégradées par le bruit du capteur. La tâche qui consiste à restaurer une image de bonne qualité à partir de sa version bruitée est communément appelée débruitage. Celui-ci a engendré une importante littérature en pré-traitement des images. Lors de ce travail de thèse, et après avoir posé le problème du débruitage en présence d'un bruit additif gaussien, nous avons effectué un état de l'art méthodique sur ce sujet. Les méthodes présentées cherchent pour la plupart à reconstruire une solution qui présente une certaine régularité. En s'appuyant sur un cadre bayésien, la régularité de la solution, qui peut être imposée de différentes manières, a été formellement mise en place en passant dans le domaine des transformées multi-échelle. Ainsi, afin d'établir un modèle d'a priori, nous avons mené une modélisation des statistiques marginales et jointes des coefficients d'images dans le domaine des transformées multi-échelles orientées (e.g. curvelets) et non-orientées (e.g. ondelettes). Ensuite, nous avons proposé de nouveaux estimateurs bayésiens pour le débruitage. La mise en œuvre de ces estimateurs est effectuée en deux étapes, la première consistant à estimer les hyperparamètres du modèle de l'a priori en présence du bruit et la seconde à trouver une forme analytique pour l'estimateur bayésien correspondant. Dans un premier temps, nous avons mis en place des estimateurs bayésiens univariés en mettant à profit les statistiques marginales des coefficients des images dans des représentations multi-échelle comme les ondelettes. Ces lois marginales ont été analytiquement modélisées par le biais des distributions: ?-stable et les Formes K de Bessel. Dans un second temps, nous avons amélioré les performances de nos estimateurs univariés en introduisant l'information géométrique dans le voisinage des coefficients. Plus précisément, nous avons proposé un cadre statistique bayésien multivarié permettant de prendre en compte les dépendances inter- et intra-échelle des coefficients, en mettant à profit les statistiques jointes de ces derniers dans le domaine des curvelets et des ondelettes non décimées. Ensuite, nous avons mis en place l'estimateur bayésien multivarié correspondant basé sur une extension multivariée de la distribution des Formes K de Bessel. Une large étude comparative a finalement été menée afin de confronter nos algorithmes de débruitage à d'autres débruiteurs de l'état de l'art.
9

Classification parcimonieuse et discriminante de données complexes. Une application à la cytologie

Brunet, Camille 01 December 2011 (has links) (PDF)
Les thèmes principaux de ce mémoire sont la parcimonie et la discrimination pour la modélisation de données complexes. Dans une première partie de ce mémoire, nous nous plaçons dans un contexte de modèle de mélanges gaussiens: nous introduisons une nouvelle famille de modèles probabilistes qui simultanément classent et trouvent un espace discriminant tel que cet espace discrimine au mieux les groupes. Une famille de 12 modèles latents discriminants (DLM) modèles est introduite et se base sur trois idées: tout d'abord, les données réelles vivent dans un sous-espace latent de dimension intrinsèque plus petite que celle de l'espace observé; deuxièmement, un sous-espace de K-1 dimensions est suffisant pour discriminer K groupes; enfin, l'espace observé et celui latent sont liés par une transformation linéaire. Une procédure d'estimation, appelée Fisher-EM, est proposée et améliore la plupart du temps les performances de clustering grâce à l'utilisation du sous-espace discriminant. Dans un second travail, nous nous sommes intéressés à la détermination du nombre de groupes en utilisant le cadre de la sériation. nous proposons d'intégrer de la parcimonie dans les données par l'intermédiaire d'une famille de matrices binaires. Ces dernière sont construites à partir d'une mesure de dissimilarité basée sur le nombre de voisins communs entre paires d'observations. En particulier, plus le nombre de voisins communs imposé est important, plus la matrice sera parcimonieuse, i.e. remplie de zéros, ce qui permet, à mesure que le seuil de parcimonie augmente, de retirer les valeurs extrêmes et les données bruitées. Cette collection de matrices parcimonieuses est ordonnée selon un algorithme de sériation de type forward, nommé PB-Clus, afin d'obtenir des représentations par blocs des matrices sériées. Ces deux méthodes ont été validées sur une application biologique basée sur la détection du cancer du col de l'utérus.
10

Représentations parcimonieuses pour les signaux multivariés

Barthélemy, Quentin 13 May 2013 (has links) (PDF)
Dans cette thèse, nous étudions les méthodes d'approximation et d'apprentissage qui fournissent des représentations parcimonieuses. Ces méthodes permettent d'analyser des bases de données très redondantes à l'aide de dictionnaires d'atomes appris. Etant adaptés aux données étudiées, ils sont plus performants en qualité de représentation que les dictionnaires classiques dont les atomes sont définis analytiquement. Nous considérons plus particulièrement des signaux multivariés résultant de l'acquisition simultanée de plusieurs grandeurs, comme les signaux EEG ou les signaux de mouvements 2D et 3D. Nous étendons les méthodes de représentations parcimonieuses au modèle multivarié, pour prendre en compte les interactions entre les différentes composantes acquises simultanément. Ce modèle est plus flexible que l'habituel modèle multicanal qui impose une hypothèse de rang 1. Nous étudions des modèles de représentations invariantes : invariance par translation temporelle, invariance par rotation, etc. En ajoutant des degrés de liberté supplémentaires, chaque noyau est potentiellement démultiplié en une famille d'atomes, translatés à tous les échantillons, tournés dans toutes les orientations, etc. Ainsi, un dictionnaire de noyaux invariants génère un dictionnaire d'atomes très redondant, et donc idéal pour représenter les données étudiées redondantes. Toutes ces invariances nécessitent la mise en place de méthodes adaptées à ces modèles. L'invariance par translation temporelle est une propriété incontournable pour l'étude de signaux temporels ayant une variabilité temporelle naturelle. Dans le cas de l'invariance par rotation 2D et 3D, nous constatons l'efficacité de l'approche non-orientée sur celle orientée, même dans le cas où les données ne sont pas tournées. En effet, le modèle non-orienté permet de détecter les invariants des données et assure la robustesse à la rotation quand les données tournent. Nous constatons aussi la reproductibilité des décompositions parcimonieuses sur un dictionnaire appris. Cette propriété générative s'explique par le fait que l'apprentissage de dictionnaire est une généralisation des K-means. D'autre part, nos représentations possèdent de nombreuses invariances, ce qui est idéal pour faire de la classification. Nous étudions donc comment effectuer une classification adaptée au modèle d'invariance par translation, en utilisant des fonctions de groupement consistantes par translation.

Page generated in 0.1207 seconds