Two chlorophylls of the FMO complex, the light-harvesting complex of the green sulfur bacteria, are modeled as two coupled qubits, each surrounded by one spin-bath simulating the environment. The dynamics of the system at a non-zero temperature provide exact analytical expressions for the transition probability and the coherence. It is shown that the decoherence-inducing interaction with the environment enhances the electronic energy transfer. Also the correlations in terms of entanglement and nonlocality are quantitatively studied, sensitively differing when introducing a decay term to resemble both chlorophylls being in their ground states. It is proved that nonlocality is a stronger form of correlation than entanglement.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-228406 |
Date | January 2014 |
Creators | Sonet Ventosa, AdriĆ |
Publisher | Uppsala universitet, Teoretisk kemi, University of Barcelona |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPKEM C ; 51 |
Page generated in 0.0207 seconds