Cette thèse porte sur la simulation numérique de modèles couplés pour l'écoulement et le transport dans les milieux poreux. Nous présentons une nouvelle méthode de couplage entre les réactions chimiques et le transport en utilisant une méthode de Newton-Krylov, et nous étudions également un modèle d'écoulement en milieu fracturé qui traite l'intersection des fractures par une méthode de décomposition de domaine. <br /> Ce travail est divisé en trois parties : la première partie contient une analyse de différents schémas numériques pour la discrétisation des problèmes d'advection-diffusion, notamment par une technique de séparation d'opérateurs, ainsi que leur mise en oeuvre informatique, dans un code industriel.<br /> La deuxième partie, qui est la contribution majeure de cette thèse, est consacrée à la modélisation et à l'implémentation d'une méthode de couplage globale pour le transport réactif. Le système couplé transport-chimie est décrit, après discrétisation en temps, par un système d'équations non linéaires. La taille du système sous-jacent, à savoir le nombre de points de grille multiplié par le nombre d'espèces chimiques, interdit la résolution du système linéaire par une méthode directe. Pour remédier à cette difficulté, nous utilisons une méthode de Newton-Krylov qui évite de former et de factoriser la matrice Jacobienne. <br /> Dans la dernière partie, nous présentons un modèle d'écoulement dans un milieu fracturé tridimensionnel, basé sur une méthode de décomposition de domaine, et qui traite l'intersection des fractures. Nous démontrons l'existence et l'unicité de la solution, et nous validons le modèle par des tests numériques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00373688 |
Date | 18 December 2008 |
Creators | Amir, Laila |
Publisher | Université Paris Dauphine - Paris IX |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0028 seconds