Este trabalho aborda principalmente dois tópicos em Análise Funcional. No primeiro tópico, estudamos zeros de polinômios em espaços de Banach reais. Apresentamos resultados devidos a J. Ferrer, estabelecendo que todo polinômio fracamente contínuo sobre os subconjuntos limitados de um espaço de Banach, de dual não separável na topologia fraca estrela, admite um subespaço linear fechado de dual não separável na topologia fraca estrela, no qual o polinômio se anula. No segundo tópico, exibimos a versão multilinear do Lema de Phelps devido a R. Aron, A. Cardwell., D. García e I. Zalzuendo. / We study two topics in Functional Analysis. In the first topic, we study zeros of polynomials on real Banach spaces. We present results due to J. Ferrer, stating that every polynomial weakly continuous on bounded subsets of a Banach space, whose dual is not separable in the weak-star topology, admits a closed linear subspace whose dual is not separable in the weak- star topology either, where the polynomial vanishes. In the second topic, we show a multilinear version for the Phelps\' Lemma by R. Aron, A. Cardwell., D. García and I. Zalzuendo.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28042010-113745 |
Date | 05 March 2010 |
Creators | Batista, Leandro Candido |
Contributors | Lourenco, Mary Lilian |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds