Return to search

W.A.M, Wire Additive Manufacturing : champs des possibles et utilisation raisonnée / WAM, Wire Additive Manufacturing : field of possibilities and reasoned use

Dans la Fabrication Additive (FA), les objets en trois dimensions sont créés couche par couche en joignant chaque couche à la précédente. Pour les pièces métalliques, il existe trois méthodes principales : le lit de poudre, le dépôt de poudre et le dépôt de fil. Ce dernier utilise de manière optimale le matériau contrairement aux autres procédés, ce qui le rend très intéressant industriellement. En effet, avec la poudre, le rapport entre la poudre utilisée et la poudre fondue n’est pas égal à un, en opposition à l’utilisation de fil. Afin de garantir la bonne fusion du métal, plusieurs méthodes existent déjà, notamment l’utilisation de lasers ou d’arcs électriques. Ce manuscrit présente une nouvelle approche de dépôt de fil utilisant l’énergie inductive pour les applications de fabrication additive (WIAM). Cette approche ne fait pas appel à un stockage du matériau fondu. Au lieu de cela, la pointe d’un fil métallique est fondue par un système de chauffage par induction. L’énergie inductive est également utilisée pour obtenir un gradient thermique optimal entre l’extrémité du fil et le substrat ou la couche précédente. Les travaux de thèse concernent le développement de cette approche par un modèle numérique et sa validation expérimentale. Il est montré que le système de chauffage par induction est capable de faire fondre la pointe du fil et de chauffer le substrat pour créer un dépôt approprié. La microstructure après dépôt de fabrication additive pour un matériau en acier inoxydable a été étudiée. Ces résultats ont été comparés avec la méthode WAM. On montre que le système de chauffage par induction donne une microstructure à très faible porosité et une microstructure sans changement soudain de composition. Ces résultats préliminaires indiquent que la fabrication additive par fil métallique avec induction (WIAM) est susceptible de constituer un processus approprié pour la FA, mais qu’elle doit encore être développée. / In Additive Manufacturing (AM), three dimensionalobjects are built layer by layer by joining each layer to the previous one. For metal parts, there are three main methods: powder bed, powder depositionand wire deposition. This latter makes optimal use of the material in contrast to other processes, which makes it very interesting industrially. Indeed, with powder,the ratio between powder used and powder meltedis not equal to one, in opposition of the use of wire. In order to ensure the proper melting of the metal, several methods already exist, including the use of lasers or electric arc. This manuscript presents a novel approach of wire deposition using inductive energy for additive manufacturing applications (WIAM). This approach does not make use of a storage of the molten material. Instead, the tip of a metal wire is melted by an induction heating system. Inductive energy is also used to obtain an optimal thermal gradient between the tip of the wire and the substrate or previous layer. Thesis work concerns the development of this approach by a numerical model, and its experimental validation. It shows that the induction heating system is able to melt the tip of the wire and heat the substrate to create suitable deposition. The microstructure of additive manufacturing stainless steel has been studied. These results have been compared with WAM method. It is shown that the induction heating system gives a microstructure with very low porosities and a microstructure without a sudden change of composition. These preliminary results indicate that Wire Induction Additive Manufacturing (WIAM) is likely to a suitable process for AM but it still needs to be developed.

Identiferoai:union.ndltd.org:theses.fr/2018ECDN0047
Date05 December 2018
CreatorsParrot, Jérôme
ContributorsEcole centrale de Nantes, Hascoët, Jean-Yves
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0015 seconds