La réussite du développement de vols spatiaux de longue durée, ainsi que de l’établissement de stations permanentes nécessite des systèmes fermés autonomes bien contrôlés. L’optimisation d’une boucle fermée d’un système support vie bio-régénératif, impose le contrôle de l’hydrodynamique et des transferts de chaleur et de masse couplés qui se développent au sein d’un habitacle spatial comprenant des hommes ou des plantes. Un protocole expérimental (expérience terrestre et méthode de mesure) a été conçu pour quantifier les vitesses de l’air et les transferts hétérogènes qui se développent par condensation d’air humide sur une surface plate horizontale de petite taille (25 cm2), en conditions contrôlées (régime d’écoulement, hygrométrie, température). Une surface active était maintenue isotherme sous le point de rosée par thermoélectricité et le flux de masse était mesuré par pesée. Un tunnel climatique a été utilisé pour générer des écoulements laminaires ou faiblement turbulents. Environ 70 expériences de condensation ont été réalisées à température ambiante (19-23°C) avec une humidité relative de 35-65 % et pour des vitesses comprises entre 1.0 et 3.0 m/s. Le dispositif de condensation a un comportement de type profil épais pour l’écoulement et les coefficients de transferts de masse ont été évalués. L’augmentation de l’intensité de l’écoulement se traduit par une dépendance du nombre de Sherwood en Re2/3. Une relation empirique est proposée pour estimer la température de la surface. Le comportement de l’écoulement au sein de la couche limite et de la croissance des gouttes sur la surface de la plaque sont discutées. Ce travail expérimental sera utile pour le développement de modèles théoriques adaptés à d’autres géométries. / For the development of successful long term space flights, and the establishment of permanent bases in space, a well controlled self sustained closed environment is required. In order to optimize a closed-loop bio-regenerative life support system, it is necessary to control the hydrodynamics and the coupled heat and mass transfer, which develop in a space habitat concerned with humans and plants. We have designed a ground based experimental setup and protocol to measure the air flow velocities and concomitant mass transfer by condensation of water vapour from humid air on a horizontal flat plate of small size (area 25 cm2), in a controlled air flow conditions (flow regime, hygrometry, temperature). An active isothermal surface was kept below the dew point, by using thermoelectricity, and precise weighing of the condensate in order to evaluate the rate of mass flux. An air-conditioned closed circuit wind tunnel has been used to produce laminar to weakly turbulent flows. Almost 70 condensation experiments have been performed at an ambient temperature (19-23 °C) for a relative humidity between 35-65 %, and for the velocity range 1.0-3.0 m/s. The condensing unit behaves as a blunt-faced body and mass transfer coefficients were deduced. When increasing the flow intensity it was found that the Sherwood number had a dependence on Re2/3. An empirical relation was proposed to estimate the surface temperature. The flow behaviour within the boundary layer and the analysis of the drop growth on the flat plate surface under weakly turbulent flows has been discussed. This experimental work will be helpful to develop theoretical models for further studies with other geometries.
Identifer | oai:union.ndltd.org:theses.fr/2011CLF22211 |
Date | 21 December 2011 |
Creators | Tiwari, Akhilesh |
Contributors | Clermont-Ferrand 2, Fontaine, Jean-Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds