This thesis presents a research project and results of design and optimization of a composite wing structure for a large aircraft in flying wing configuration. The design process started from conceptual design and preliminary design, which includes initial sizing and stressing followed by numerical modelling and analysis of the wing structure. The research was then focused on the minimum weight optimization of the /composite wing structure /subject to multiple design /constraints. The modelling, analysis and optimization process has been performed by using the NASTRAN code. The methodology and technique not only make the modelling in high accuracy, but also keep the whole process within one commercial package for practical application.
The example aircraft, called FW-11, is a 250-seat commercial airliner of flying wing configuration designed through our MSc students Group Design Project (GDP) in Cranfield University. Started from conceptual design in the GDP, a high-aspect-ratio and large sweepback angle flying wing configuration has been adopted. During the GDP, the author was responsible for the structural layout design and material selection. Composite material has been chosen as the preferable material for both the inner and outer wing components. Based on the derivation of structural design data in the conceptual phase, the author continued with the preliminary design of the outer wing airframe and then focused on the optimization of the composite wing structure. Cont/d.
Identifer | oai:union.ndltd.org:CRANFIELD1/oai:dspace.lib.cranfield.ac.uk:1826/7290 |
Date | 01 1900 |
Creators | Xu, Rongxin. |
Contributors | Guo, S. J. |
Publisher | Cranfield University |
Source Sets | CRANFIELD1 |
Language | English |
Detected Language | English |
Type | Thesis or dissertation, Masters, MSc by Research |
Rights | © Cranfield University 2012. All rights reserved. No part/ of this publication may be reproduced without the written /permission of the /copyright /owner. |
Page generated in 0.0022 seconds