• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development and implementation of finite element analysis techniques in the design of press tooling

Mbavhalelo, M., Oliver, G. January 2009 (has links)
Published Article / Rapid and reliable methods for component development and economic manufacturing layout are today crucial factors for the application of press tooling techniques in mass production of automotive industry components. The use of Finite Element Analysis (FEA) based forming simulation can provide a more detailed insight into the real behaviour of a structure. An LS-DYNA finite element model was developed to analyse the material behaviour during the piercing process of a drainage hole for a shock absorber seat. The simulation is intended to simulate tearing that occurs during the manufacturing stage. Once the current punch produces the observed tearing we can modify the punch to eliminate the problem.
2

Numerical and analytical modeling of sanding onset prediction

Yi, Xianjie 30 September 2004 (has links)
To provide technical support for sand control decision-making, it is necessary to predict the production condition at which sand production occurs. Sanding onset prediction involves simulating the stress state on the surface of an oil/gas producing cavity (e.g. borehole, perforation tunnel) and applying appropriate sand production criterion to predict the fluid pressure or pressure gradient at which sand production occurs. In this work, we present numerical and analytical poroelastoplastic stress models describing stress around producing cavity and verify those models against each other. Using those models, we evaluate the stress state on the cavity surface and derive sanding onset prediction models in terms of fluid pressure or pressure gradient based on the given sand production criterion. We then run field case studies and validate the sanding onset prediction models. Rock strength criterion plays important roles in sanding onset prediction. We investigate how the sanding onset prediction results vary with the selection of one or another rock strength criterion. In this work, we present four commonly used rock strength criteria in sanding onset prediction and wellbore stability studies: Mohr-Coulomb, Hoek-Brown, Drucker-Prager, and Modified Lade criteria. In each of the criterion, there are two or more parameters involved. In the literature, a two-step procedure is applied to determine the parameters in the rock strength criterion. First, the Mohr-Coulomb parameters like cohesion So and internal friction angle ff are regressed from the laboratory test data. Then, the parameters in other criteria are calculated using the regressed Mohr-Coulomb parameters. We propose that the best way to evaluate the parameters in a specific rock strength criterion is to perform direct regression of the laboratory test data using that criterion. Using this methodology, we demonstrate that the effect of various rock strength criteria on sanding onset prediction is less dramatic than using the commonly used method. With this methodology, the uncertainties of the effect of rock strength criterion on sanding onset prediction are also reduced.
3

Estudo de criterios de resistencia de materiais anisotropicos aplicados a madeira / Study of anisotropic material failure criteria, applied to wood

Nicolas, Elias Antonio 30 June 2006 (has links)
Orientador: Nilson Tadeu Mascia / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-07T08:37:01Z (GMT). No. of bitstreams: 1 Nicolas_EliasAntonio_D.pdf: 5212612 bytes, checksum: 6374b5ff3649878b30250be16c1a8e76 (MD5) Previous issue date: 2006 / Resumo: Esta pesquisa refere-se ao estudo de critérios de resistência de materiais anisotrópicos, especialmente o critério tensorial de resistência de TSAI- WU, com aplicações teóricas e experimentais para a madeira. Neste sentido foi realizada uma revisão teórica dos principais temas relacionados à presente pesquisa, como: critérios gerais de resistência, fórmula de hankinson, critério de TSAIWU, modos de ruptura da madeira, fatores que influenciam na resistência da madeira,equipamentos e corpos-de-prova para realização de ensaios uniaxiais e biaxiais, prescrições de cálculo das normas de estruturas de madeira. O objetivo principal deste trabalho foi determinar os parâmetros de resistência do critério tensorial de TSAI-WU, com a finalidade de definir uma superfície de ruptura, para a espécie de madeira estudada, cupiúba (Goupia glabra), e comparar os dados dos ensaios com as estimativas do critério. No estudo experimental foram realizados os seguintes ensaios: tração e compressão, uniaxiais, com ângulos das fibras inclinados em relação ao carregamento (0°, 15°, 30°, 45°, 60°, 75° e 90°); ensaios de cisalhamento paralelo às fibras e ensaios de compressão biaxial. As estimativas do critério de TSAI- WU ficaram próximas das estimativas da fórmula de Hankinson e também dos dados dos ensaios uniaxiais de tração e compressão. Por outro lado, para ensaios biaxiais, o critério de TSAI-WU sofre grande influência do coeficiente de interação.De um modo geral, o critério de TSAI-WU apresenta bons resultados, facilidade de utilização se comparado a outros critérios, devido especialmente a seu caráter tensorial, podendo ser aplicado na avaliação de resistência da madeira e de outros materiais anisotrópicos / Abstract: This research deals with the study of anisotropic material failure criteria, specifically TSAI- WU tensor failure criteria, and theoretical and experimental applications for wood. Thus it was carried out a theoretical revision of the principal themes related to this research: general failure criteria, Hankinson's formula, TSAI-WU tensor criterion, failure modes of wood, factors that affect wood strength, equipaments and specimens for development of uniaxial and biaxial tests and rules of design codes of wood structures. The main objective of this work was to determine the TSAI-WU tensor failure criterion parameters, with the purpose of defining the failure surface, for the wood specie Cupiúba (Goupia Glabra) and of comparing the test results and criterion estimates as well. In the experimental development it was performed the following axial tests: tension and compression, with inclined grain angles in related to the load (0°, 15°, 30°, 45°, 60°, 75° and 90°); shear tests and biaxial compression. The estimates of TSAI-WU criterion were close of Hankinson's formula and the tension and compression tests results too. On the other hand, for biaxial compressive test, TSAI- WU criterion influence ofthe interaction coefficient (F12). In general, TSAI- WU criterion can be applied to evaluate wood strength and other anisotropic materials too, by presenting good results and facility in utilizing especially when comparing to other criteria due to its tensor form / Doutorado / Estruturas / Doutor em Engenharia Civil
4

Effect of Pre-Bending and Hydroforming Parameters on the Formability of Advanced High Strength Steel Tube

Bardelcik, Alexander January 2006 (has links)
With increasing fuel costs and the current drive to reduce greenhouse gas emissions and fuel consumption, a need to reduce vehicle weight is apparent. Weight reduction can be achieved by replacing conventionally stamped structural members with hydroformed parts. The weight reduction can be further enhanced by reducing the thickness of the hydroformed members through the use of advanced high strength steel (AHSS). A primary limitation in hydroforming AHSS, is the limited ductility or formability of these materials. This limitation becomes acute in multi-stage forming operations in which strain path changes become large making it difficult to predict formability. Thus, the focus of the current work is to study the effects of pre-bending on the subsequent hydroformability of Dual-Phase DP600 steel tubes. As part of this effort, the effect of key bending and hydroforming process parameters, bending boost and hydroforming end-feed, have been studied in a parametric fashion. <br /><br /> Multi-step pre-bending and hydroforming experiments were performed on 76. 2 mm (3. 0") OD tubes with a wall-thickness of 1. 85mm (DP600). Experiments were also performed on 1. 74mm Interstitial Free (IF) steel tube, which provided a low strength, high formability baseline material for comparison purposes. A fully instrumented servo-hydraulic mandrel-rotary draw tube bender was used in the pre-bending experiments in which various levels of boost were applied. The results showed that increased boost reduced the major (tensile) strain and thinning at the outside of the bend. At the inside of the bend, the compressive minor strain became larger and thickening increased. <br /><br /> Hydroforming of the straight and pre-bent tubes was conducted using various levels of load-control end-feed (EF). For both straight and pre-bend tube hydroforming, an increase in hydroforming EF resulted in increased burst pressure and corner-fill expansion (CFE). The effect of bending boost on CFE was also measured. For a given hydroforming EF case, a tube bent with greater boost achieved a higher burst pressure and consequently a greater CFE which increased the hydroformability of the material. Pre-bending was shown to consume a considerable amount of the formability of the tube in the hydroforming experiments. For the same EF case, the pre-bent tubes could only achieve a fraction of the straight tube CFE at burst. <br /><br /> The pre-bending and hydroforming experiments were complimented by finite element simulation in the hope of providing additional insight into these processes. The finite element (FE) models were able to accurately predict the strain and thickness changes imposed during pre-bending. The models were able to accurately predict the CFE, EF displacement, and strain and thickness distributions after hydroforming. <br /><br /> The extended stress-based forming limit curve (XSFLC) failure criterion was applied to predict failure (onset of necking) during hydroforming, which was measured as the burst pressure in the experiments. For straight tube hydroforming, the XSFLC predicted the correct failure pressure versus hydroforming EF load trend, but over predicted the failure pressures. In pre-bend hydroforming, the models were able to capture the effect of bending boost and hydroforming EF on the hydroformability of the tubes. The XSFLC was able to capture the drop in formability for bending versus straight tube hydroforming, but was unable to capture the failure pressure versus hydroforming EF load trend or magnitude. Further work is required to make the XSFLC applicable to straight and pre-bend hydroforming.
5

Effect of Pre-Bending and Hydroforming Parameters on the Formability of Advanced High Strength Steel Tube

Bardelcik, Alexander January 2006 (has links)
With increasing fuel costs and the current drive to reduce greenhouse gas emissions and fuel consumption, a need to reduce vehicle weight is apparent. Weight reduction can be achieved by replacing conventionally stamped structural members with hydroformed parts. The weight reduction can be further enhanced by reducing the thickness of the hydroformed members through the use of advanced high strength steel (AHSS). A primary limitation in hydroforming AHSS, is the limited ductility or formability of these materials. This limitation becomes acute in multi-stage forming operations in which strain path changes become large making it difficult to predict formability. Thus, the focus of the current work is to study the effects of pre-bending on the subsequent hydroformability of Dual-Phase DP600 steel tubes. As part of this effort, the effect of key bending and hydroforming process parameters, bending boost and hydroforming end-feed, have been studied in a parametric fashion. <br /><br /> Multi-step pre-bending and hydroforming experiments were performed on 76. 2 mm (3. 0") OD tubes with a wall-thickness of 1. 85mm (DP600). Experiments were also performed on 1. 74mm Interstitial Free (IF) steel tube, which provided a low strength, high formability baseline material for comparison purposes. A fully instrumented servo-hydraulic mandrel-rotary draw tube bender was used in the pre-bending experiments in which various levels of boost were applied. The results showed that increased boost reduced the major (tensile) strain and thinning at the outside of the bend. At the inside of the bend, the compressive minor strain became larger and thickening increased. <br /><br /> Hydroforming of the straight and pre-bent tubes was conducted using various levels of load-control end-feed (EF). For both straight and pre-bend tube hydroforming, an increase in hydroforming EF resulted in increased burst pressure and corner-fill expansion (CFE). The effect of bending boost on CFE was also measured. For a given hydroforming EF case, a tube bent with greater boost achieved a higher burst pressure and consequently a greater CFE which increased the hydroformability of the material. Pre-bending was shown to consume a considerable amount of the formability of the tube in the hydroforming experiments. For the same EF case, the pre-bent tubes could only achieve a fraction of the straight tube CFE at burst. <br /><br /> The pre-bending and hydroforming experiments were complimented by finite element simulation in the hope of providing additional insight into these processes. The finite element (FE) models were able to accurately predict the strain and thickness changes imposed during pre-bending. The models were able to accurately predict the CFE, EF displacement, and strain and thickness distributions after hydroforming. <br /><br /> The extended stress-based forming limit curve (XSFLC) failure criterion was applied to predict failure (onset of necking) during hydroforming, which was measured as the burst pressure in the experiments. For straight tube hydroforming, the XSFLC predicted the correct failure pressure versus hydroforming EF load trend, but over predicted the failure pressures. In pre-bend hydroforming, the models were able to capture the effect of bending boost and hydroforming EF on the hydroformability of the tubes. The XSFLC was able to capture the drop in formability for bending versus straight tube hydroforming, but was unable to capture the failure pressure versus hydroforming EF load trend or magnitude. Further work is required to make the XSFLC applicable to straight and pre-bend hydroforming.
6

Optimal design of a composite wing structure for a flying-wing aircraft subject to multi-constraint

Xu, Rongxin. 01 1900 (has links)
This thesis presents a research project and results of design and optimization of a composite wing structure for a large aircraft in flying wing configuration. The design process started from conceptual design and preliminary design, which includes initial sizing and stressing followed by numerical modelling and analysis of the wing structure. The research was then focused on the minimum weight optimization of the /composite wing structure /subject to multiple design /constraints. The modelling, analysis and optimization process has been performed by using the NASTRAN code. The methodology and technique not only make the modelling in high accuracy, but also keep the whole process within one commercial package for practical application. The example aircraft, called FW-11, is a 250-seat commercial airliner of flying wing configuration designed through our MSc students Group Design Project (GDP) in Cranfield University. Started from conceptual design in the GDP, a high-aspect-ratio and large sweepback angle flying wing configuration has been adopted. During the GDP, the author was responsible for the structural layout design and material selection. Composite material has been chosen as the preferable material for both the inner and outer wing components. Based on the derivation of structural design data in the conceptual phase, the author continued with the preliminary design of the outer wing airframe and then focused on the optimization of the composite wing structure. Cont/d.
7

複合応力下における木材 (ヒノキ) の破壊挙動 (載荷方式および載荷経路の影響)

山崎, 真理子, YAMASAKI, Mariko, 佐々木, 康寿, SASAKI, Yasutoshi 08 1900 (has links)
No description available.
8

MULTISCALE MODELING AND ANALYSIS OF FAILURE AND STABILITY DURING SUPERPLASTIC DEFORMATION -- UNDER DIFFERENT LOADING CONDITIONS

Thuramalla, Naveen 01 January 2004 (has links)
Superplastic forming (SPF) is a valuable near net shape fabrication method, used to produce very complex, contoured and monolithic structures that are often lighter, stronger and safer than the assemblies they replace. However, the widespread industrial use of Superplastic (SP) alloys is hindered by a number of issues including low production rate and limited predictive capabilities of stability during deformation and failure. Failure during SPD may result from geometrical macroscopic instabilities and/or microstructural aspects. However, the available failure criteria are either based on geometrical instabilities or microstructural features and do not account for both failure modes. The present study presents a generalized multi-scale stability criterion for SP materials, accounting for both aspects of failure under various loading conditions. A combined model accounting for cavity nucleation and plasticity controlled cavity growth along with a grain growth model and a modified microstructure based constitutive equation for SP materials is incorporated into Harts stability analysis to develop the proposed stability criterion for different loading conditions. Effects of initial grain size, initial levels of cavitation, nucleation strain, strain-rate sensitivity, and grain-growth exponent on the optimum forming curves of different SP alloys are investigated, for different loading conditions.
9

Análise em elementos finitos de projetos em fibra de carbono com valores de propriedades obtidas experimentalmente / Finite elements analysis of carbon fiber projects with properties values obtained through experiments

Mendes, Cláudia Luisa 22 January 2018 (has links)
Submitted by Cláudia Luisa Mendes null (claudiamendes@outlook.com) on 2018-03-13T13:20:37Z No. of bitstreams: 1 Claudia Final.pdf: 2801387 bytes, checksum: 138d1c19b49e86cfef45a94a9840b6aa (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2018-03-14T13:43:36Z (GMT) No. of bitstreams: 1 mendes_cl_me_bauru.pdf: 2801387 bytes, checksum: 138d1c19b49e86cfef45a94a9840b6aa (MD5) / Made available in DSpace on 2018-03-14T13:43:36Z (GMT). No. of bitstreams: 1 mendes_cl_me_bauru.pdf: 2801387 bytes, checksum: 138d1c19b49e86cfef45a94a9840b6aa (MD5) Previous issue date: 2018-01-22 / A exigência dos requisitos de desempenho em estruturas aeroespaciais, navais e automobilísticas vem proporcionando o desenvolvimento de novos materiais, bem como de novas técnicas de fabricação. Normalmente, elevados valores de resistência e rigidez específicas aliados ao baixo peso específico são procurados em projetos estruturais, obtendo-se soluções por meio da utilização de materiais compósitos, particularmente polímeros termo fixos dotados de reforços fibrosos. O entendimento do que é um material composto é necessário, pois trata-se da combinação de no mínimo dois materiais com fase heterogênea, que separados possuem propriedades e características distintas e sua combinação é desejada para a confecção de um material único, com a conformidade das propriedades de ambos os materiais, tornando atrativa sua aplicação. Para otimizar a confecção do laminado em cada projeto, é imprescindível a utilização do modelo em elementos finitos para a obtenção da faixa de tensões, pelo método do critério de falha, sofrida pela amostra e assim obter-se a melhor propriedade mecânica para o seu uso. O presente trabalho tem por objetivo elaborar um estudo comparativo entre os resultados obtidos experimentalmente e os obtidos virtualmente, para validar o uso do software de elementos finitos na execução de um projeto utilizando como material principal o compósito estrutural de fibra de carbono com resina epóxi. Para isso, foram realizados ensaios para obter as propriedades mecânicas, e a melhor temperatura de cura da resina SQ 2004. Posteriormente foram feitos laminados de fibra de carbono com esta resina e extraído suas propriedades mecânicas. Por fim, utilizou-se as propriedades obtidas como entrada do software de elementos finitos e comparou-se o resultado através de três critérios de falha: Hill, Hoffman e Tsai-Wu. Como resultado, constata-se que o critério de falha de Tsai-Wu é o mais indicado para o cálculo da integridade estrutural de um componente de compósito que utiliza fibra de carbono. / The demand of requirements in performance of aerospace, naval and automotive structures has been providing the development of new materials as well as new manufacturing techniques. High values of specific strength and stiffness combined with low specific gravity are usually sought in blade designs for wind generators and other components of these systems, obtaining solutions using composite materials, particularly thermoset polymers endowed with fibrous reinforcements. The understanding of what is a composite material is necessary because it is a combination of at least two materials with heterogeneous phase, which have different properties and characteristics and their combination is desired for the manufacture of a single material with conformity of the properties of both materials, making its application attractive. To optimize the preparation of the laminate in each project, it is essential to use the finite element model to obtain the stress range, by the failure criterion method, and to obtain the best mechanical property for its use. The present work has the objective of elaborating a comparative study between the results obtained experimentally and those obtained virtually to validate the use of finite element software in the execution of a project using the structural material of carbon fiber with epoxy resin as its main material. For this, tests were carried out to obtain the mechanical properties and the best curing temperature of the SQ 2004 resin. Later, carbon fiber laminates were made with this resin and extracted its mechanical properties. Finally, the obtained properties were used as inputs to the finite element software and the result was compared through three failure criteria: Hill, Hoffman and Tsai-Wu. It is concluded that the Tsai-Wu failure criterion is the most suitable for calculating the structural integrity of a composite component using carbon fiber.
10

Analise de estruturas sanduiche : parametros de projeto / Sandwich structures analysis : design parameters

Gagliardo, Debora Pierini 21 August 2008 (has links)
Orientador: Nilson Tadeu Mascia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-11T20:02:44Z (GMT). No. of bitstreams: 1 Gagliardo_DeboraPierini_M.pdf: 2748592 bytes, checksum: 3f4f2274fa55f9b27f8663ca912c32fc (MD5) Previous issue date: 2008 / Resumo: As estruturas sanduíche têm despertado grande interesse e já estão bastante difundidas em diversos segmentos industriais, sendo suas principais utilizações nas indústrias aeroespacial, militar, naval e civil. Este fato se deve à sua propriedade de combinar alta rigidez à flexão e baixo peso, resultando em uma estrutura muito eficiente. Neste sentido, a análise e cálculo das estruturas sanduíche são de extrema importância no desenvolvimento de projetos de aplicação do mesmo. Neste trabalho, foram analisados os critérios de falha dos painéis, bem como os materiais e suas propriedades mecânicas, considerando as alterações e considerações que devem ser feitas nos projetos de acordo com as características do material. Na parte final dessa pesquisa, são apresentadas a teoria de cálculo e a rotina para elaboração de projetos relacionados com a construção civil utilizando as estruturas sanduíche, com ênfase em estruturas planas, tais como vigas e placas. Por fim emprega-se uma ferramenta, planilha eletrônica, para analisar e avaliar a aplicação de diversos materiais de construção em estruturas sanduíche. / Abstract: The sandwich structures have aroused great interest and have already been very widespread in several branches in industries, such as in the aerospace, military, naval and civil construction industries. This is due to their property to combine both high bending rigidity and the low weight, resulting in a very efficient structure. Thus, the analysis and also the calculation of sandwich structures are very important in developing the application projects. In this work, it was reviewed the failure criteria of the panels, as well as the materials and their mechanical properties, considering the changes and considerations that have to be performed in the project in accordance with the characteristics of the material. At the final part of this research, the theory of calculation and also the routine for development projects related with the civil construction using the sandwich structures are presented, with emphasis on flat structures, such as beams and plates. Finally employs is a tool, spreadsheet, to analyse and evaluate the implementation of various building materials in sandwich structures. / Mestrado / Estruturas / Mestre em Engenharia Civil

Page generated in 0.0877 seconds