Return to search

Hidden Fear: Evaluating the Effectiveness of Messages on Social Media

abstract: The development of the internet provided new means for people to communicate effectively and share their ideas. There has been a decline in the consumption of newspapers and traditional broadcasting media toward online social mediums in recent years. Social media has been introduced as a new way of increasing democratic discussions on political and social matters. Among social media, Twitter is widely used by politicians, government officials, communities, and parties to make announcements and reach their voice to their followers. This greatly increases the acceptance domain of the medium.

The usage of social media during social and political campaigns has been the subject of a lot of social science studies including the Occupy Wall Street movement, The Arab Spring, the United States (US) election, more recently The Brexit campaign. The wide

spread usage of social media in this space and the active participation of people in the discussions on social media made this communication channel a suitable place for spreading propaganda to alter public opinion.

An interesting feature of twitter is the feasibility of which bots can be programmed to operate on this platform. Social media bots are automated agents engineered to emulate the activity of a human being by tweeting some specific content, replying to users, magnifying certain topics by retweeting them. Network on these bots is called botnets and describing the collaboration of connected computers with programs that communicates across multiple devices to perform some task.

In this thesis, I will study how bots can influence the opinion, finding which parameters are playing a role in shrinking or coalescing the communities, and finally logically proving the effectiveness of each of the hypotheses. / Dissertation/Thesis / Masters Thesis Computer Science 2020

Identiferoai:union.ndltd.org:asu.edu/item:57340
Date January 2020
ContributorsAhmadi, Mohsen (Author), Davulcu, Hasan (Advisor), Sen, Arunabha (Committee member), Li, Baoxin (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format51 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds