Return to search

Transformada Wavelet na detecção de patologias da laringe / Wavelet Transform in the detection of pathologies of the larynx

CARVALHO, R. T. S. Transformada Wavelet na detecção de patologias da laringe. 2012. 63 f. Dissertação (Mestrado em Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2013-01-18T12:18:52Z
No. of bitstreams: 1
2012_dis_rtscarvalho.pdf: 1627176 bytes, checksum: e767247f38c5b5bf6ff8e72debd59101 (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2013-02-08T18:03:25Z (GMT) No. of bitstreams: 1
2012_dis_rtscarvalho.pdf: 1627176 bytes, checksum: e767247f38c5b5bf6ff8e72debd59101 (MD5) / Made available in DSpace on 2013-02-08T18:03:25Z (GMT). No. of bitstreams: 1
2012_dis_rtscarvalho.pdf: 1627176 bytes, checksum: e767247f38c5b5bf6ff8e72debd59101 (MD5)
Previous issue date: 2012-03 / The amount of non-invasive methods of diagnosis has increased due to the need for simple, quick and painless tests. Due to the growth of technology that provides the means for extraction and signal processing, new analytical methods have been developed to help the understanding of analysis of the complexity of the voice signals. This dissertation presents a new idea to characterize signals of healthy and pathological voice based on one mathematical tools widely known in the literature, Wavelet Transform (WT). The speech data were used in this work consists of 60 voice samples divided into four classes of samples: one from healthy individuals and three from people with vocal fold nodules, Reinke’s edema and neurological dysphonia. All the samples were recorded using the vowel /a/ in Brazilian Portuguese. The obtained results by all the pattern classifiers studied indicate that the proposed approach using WT is a suitable technique to discriminate between healthy and pathological voices, since they perform similarly to or even better than classical technique, concerning recognition rates. / A quantidade de métodos não invasivos de diagnóstico tem aumentado devido à necessidade de exames simples, rápidos e indolores. Por conta do crescimento da tecnologia que fornece os meios necessários para a extração e processamento de sinais, novos métodos de análise têm sido desenvolvidos para compreender a complexidade dos sinais de voz. Este trabalho de dissertação apresenta uma nova ideia para caracterizar os sinais de voz saudável e patológicos baseado em uma ferramenta matemática amplamente conhecida na literatura, a Transformada Wavelet (WT). O conjunto de dados utilizado neste trabalho consiste de 60 amostras de vozes divididas em quatro classes de amostras, uma de indivíduos saudáveis e as outras três de pessoas com nódulo vocal, edema de Reinke e disfonia neurológica. Todas as amostras foram gravadas usando a vogal sustentada /a/ do Português Brasileiro. Os resultados obtidos por todos os classificadores de padrões estudados mostram que a abordagem proposta usando WT é uma técnica adequada para discriminação entre vozes saudável e patológica, e apresentaram resultados similares ou superiores a da técnica clássica quanto à taxa de reconhecimento.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/4430
Date03 1900
CreatorsCarvalho, Raphael Torres Santos
ContributorsCavalcante, Charles Casimiro
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds